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Theory employed
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The models

Eulerian FDM for standard Boussinesq equations
Nonlinear code without particular run-up features
Used only in linear mode, with and without dispersion
terms

Lagrangian FDM for Boussinesq type equations
Method particularly designed for runup
Fully nonlinear, but weakly dispersive. Employed in
hydrostatic and dispersive mode

Boundary Integral Method (BIM)
Full potential theory
Used for comparison
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The fully nonlinear Boussinesq equations
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Red: “Important” dispersion terms

Green: fully nonlinear version,

� � � � � : source terms.
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Long waves and Lagrangian coordinates

Simple flow structure material fluid columns remain
(nearly) vertical
Lagrangian coordinate �:

��� �� � � � � ��� � � 	 � �

Transformation
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Shoreline: � �
at fixed �
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The Lagrangian Boussinesq model

$ Second order FDM model. Staggered grid in space
and time.

$ -node at shoreline position (fixed �).
Condition % � � � � �

implemented directly.

$ Hydrostatic (NLSW) version is explicit.

$ Dispersive version implicit – iteration on nonlinearity
(may be avoided)

$ Wave paddle is also simple to implement.

$ No smoothing or filtering for non-breaking waves.

$ Hydrostatic (NLSW) extensions to non-planar waves
exist
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Results
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Initial condition, “N-wave”

� /km

&'

Shape akin to slide generated tsunami, but zero initial
velocities. Resolution 50m.

Bottom: linear, steep, 1 in 10 slope
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Nomenclature

ref.: (Semi-)analytic solutions from reference papers

Bouss(NL) : Nonlinear Boussinesq solution
(Lagrangian)

NLSW: Nonlinear shallow water solution (Lagrangian)

Bouss(L): Linear Boussinesq solution (Eulerian)

SW(L): Linear shallow water solution (Eulerian)

pot(NL): Full potential theory (boundary integral
method)

Color codes are preferably kept consistent.
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Global; ( sec

Bouss(NL) NLSW

Bouss(L) SW(L)

pot(NL)
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Surfaces at
� � �) �+* �

sek. Comparison of models.
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Local; ( sec

Bouss(NL)

NLSW
Bouss(L)
SW(L)
pot(NL)
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Surfaces at
� � � ,- * �

sek. Comparison of models.
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Shoreline motion

Bouss(NL)

NLSW
Bouss(L)
SW(L)
pot(NL)
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/sec

� '

Inundation. Comparison of models.
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Boussinesq; convergence of inundation
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Bouss(NL). Curves marked by

. � (m)
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NLSW; convergence of inundation
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NLSW. Curves marked by
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NLSW and reference solution
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Analytic and NLSW. Latter marked by

. � (m)
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Surfaces, NLSW and analytic
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NLSW
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Comparison of NLSW (
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m) and reference solution
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Surfaces, closeup sec
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Analytic and NLSW. Latter marked by

. � (m).
Observe small scale features in reference solution
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Maximum withdrawal; convergence

Bouss(NL)
NLSW
ref.

/10 (m)

2 (m)

NLSW virtually linear convergence in displayed
range

Bouss(NL) better (quadratic) convergence, fine
resolution still needed
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Concluding remarks 1

Wave models

1. Dispersion important for benchmark 1

2. Nonlinearity not important for shoreline extrema neither
for shallow water models (as expected) nor dispersive
models, but reduce duration of first withdrawal.

3. Boussinesq model in close agreement with full
potential theory

4. Particular for NLSW: Large accelerations at
max. draw-down. Reference solution becomes “weak”
(non-differentiable) challenge for the numerics
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Concluding remarks 2

Performance of numerics

1. Fine resolution required near shore

2. Close overall agreement between NLSW FDM and
reference solution.

3. Discrete NLSW solution converges, but slowly, at
max. draw-down

4. Minor unresolved features near shore, also in
reference solution
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Extras
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The boundary integral model (BIM)

Related to high order technique of Dold (1992)

$ Lagrangian particles traced at surface

$ Cauchy’s formula for complex velocity ( 
 � 354 )

$ Cubic splines for field variables – solution is twice
continuously differentiable

$ “Moderately high order”: less restricted at boundaries
than Dold (1992)
Special treatment of shoreline; invocation of analyticity
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The Eulerian Boussinesq model

Standard Boussinesq equations expressed in terms of
velocity and surface elevation. Nonlinear model, but used
only in linear mode for benchmark problems. FDM,
staggered in space and time
Variable grid:

.� 6 � � . �

for

� 7 �98

Inundation computed from � and extrapolated to shore
(� � �

)
Consistent with

� :�;< = > �
�

# 
 � � � ?� 	@ ?� �

as inferred from the continuity equation.
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The simulations

Series of resolutions employed for each model

BIM and Eulerian FDM: adaptive spatial refinement
employed

Lagrangian FDM: uniform resolution initially

Semi-infinite domain used in reference paper Carrier,
Wu and Yeh (2003)

Radiation conditions introduce additional errors
and uncertainties – avoided.
Extra deep water region added. Domain � A - �

km
not affected by farther boundary in

�B �

sec.
Confirmed by tests.
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Local; ( sec

Bouss(NL)

NLSW
Bouss(L)
SW(L)
pot(NL)
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Surfaces at
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sek. Comparison of models.
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Local; ( sec

Bouss(NL)
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Bouss(L)
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sek. Comparison of models.
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Boussinesq; shoreline speed
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NLSW; shoreline speed
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NLSW. Curves marked by

. � (m)
Bench. 1 – p.29/39



NLSW and reference solution
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Boussinesq; convergence sec
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Boussinesq; convergence sec
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Bouss(NL). Curves marked by
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NLSW; convergence sec
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NLSW. Curves marked by
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NLSW; convergence sec
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NLSW. Curves marked by
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Grid stretching at beach

Bouss(NL)

NLSW

�

/sec

E

Grid spacing adjacent to beach.
Bench. 1 – p.35/39



Global; ( sec

Bouss(NL) NLSW

Bouss(L) SW(L)

pot(NL)
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Surfaces at
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sek. Comparison of models.
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Global; ( sec

Bouss(NL) NLSW

Bouss(L) SW(L)

pot(NL)
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Surfaces at
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sek. Comparison of models.
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