

Hydraulic Performance and Stability of Coastal Defence Structures

H. Oumeraci, E-mail: h.Oumeraci@tu-bs.de

- Leichtweiß-Institute for Hydromechanics and Coastal Engineering, Technical University Braunschweig, Braunschweig
- Coastal Research Centre, University Hannover and Technical University Braunschweig, Hannover

Outline

- Rubble Mound Structures and Breakwaters:
 - Wave-Induced Internal Flow and Hydraulic Performance
 - Effect of Core Permeability on Hydraulic Stability and Performance
- Hydraulic Performance of an Artificial Reef with Rectangular Shape
- Hydraulic Performance of Wave Absorbers
 - Submerged Wave Absorbers
 - Surface Piercing Wave Absorbers
- Submerged Wave Absorbers as Artificial Reefs for Coastal Protection
- Soft Wave Barriers for Coastal Protection
- Geotextile Structures for Coastal Protection

Rubble Mound Structures and Breakwaters

Wave-Induced Internal Flow and Hydraulic Performance

References:

- Muttray, M. (2000): Wave motion at and in rubble mound breakwaters-large-scale model and theoretical investigation, PhD-Thesis, TU Braunschweig 282p. (in German)
- Muttray, M., Omeraci, H. (2005): Theoretical and empirical study on wave damping inside a rubble mound breakwater, *Coastal Engineering* vol. 52 .pp. 709-725.

Rubble Mound Breakwater: Model Construction in GWK

Experimental Set-Up for Rubble Mound Breakwater Model

Wave-Induced Pore Pressure Field

Water Depth : d = 4,50 [m]**Regular Waves** Wave Height : H = 1,00 [m] max. Wave Run-up: t = 0 [s] Wave Period : T = 6,00 [s] Max. Run-up Scale: 5 [kPa/m] t - 0.25 T t = 0t + 0.25 T t + 0.5 T

ASCH

Wave Energy Dissipation at and in the Breakwater

Effect of Core Permeability on Hydraulic Stability and Performance of Rubble Mound Breakwater

References:

• Oumeraci, H.; Kortenhaus, A.; Werth, (2007): Stability and Hydraulic Performance of a conventional rubble mound breakwater and breakwater with sand in geo containers. Submitted to ASCE Coastal Structure, Conf. Venice.

Twin-Wave Flume at Leichtweiß Institut

2m 1m

(a) General bird view of twin-flume

- Regular waves: up to H= 30cm
- Random wave: up to H_s = 20cm
- Solitary waves: up to H= 30cm

b) Twin-Wave Paddle (Synchron or independent)

VSCH

Geo-Core and Conventional Rubble Mound Breakwater Models in Twinflume

Mode of Placement	Description	Darcy´s permeability coefficient k value [m/s]
	GSC-structure made of geotextile sand containers placed randomly	2.412 x 10 ⁻²
	Structure made of gravel	3.881 x 10 -1

Stability Number: Geo-Core vs. Traditional Breakwater

K_D – Value in HUDSON-Formula for Traditional Breakwater

K_D – Value in HUDSON-Formula for Geo-Core Breakwater

Stability Number for the Rear Side

Wave Reflection Performance

Hydraulic Performance of an Artificial Reef with Rectangular Shape

References:

- Bleck, M. (2003): Hydraulic performance of artificial reef with rectangular shape. PhD-Thesis (in German): <u>www.biblio.tu-bs.de</u>
- Bleck, M; Oumeraci, H. (2002): Hydraulic performance of artificial reefs: global and local description. Proc. ICCE '02
- Bleck, M.; Oumeraci, H. (2004): Analytical model for wave transmission behind artificial reefs. Proc. ICCE '04

Wave Transformation at a Reef in Waikiki/Hawaii (Gerritsen, 1981)

Position of the Problem

However:

Shift of wave energy towards higher frequencies behind reef

Experimental Set-Up in the Wave Flume of LWI

Wave Transformation at a Reef

 $C_r^2 + C_d^2 + C_t^2 = 1$

Influencing Parameters on Hydraulic Performance

	Multiple Regression Analysis (d _r /H _i ; H _i /L _i ; B/L _i)	Simplified (d _r /H _i)
Transmission	$C_{t} = 0,5 + 0,5 \cdot \cos\left(0,48 \left(\frac{B}{L_{i}}\right)^{0,15} \left(\frac{H_{i}}{L_{i}}\right)^{-0,35} \left(\frac{d_{r}}{H_{i}}\right)^{-0,7}\right)$ $\sigma'(C_{t}) = 4,6\%$	$C_{t} = 1,0 - 0,83 \cdot exp[-0,72 \cdot (d_{r}/H_{i})]$ $\sigma'_{Ct} = 6,7\%$
Reflection	$C_{r} = 0,5 + 0,5 \cdot \cos\left(2,66\left(\frac{B}{L_{i}}\right)^{0,01}\left(\frac{H_{i}}{L_{i}}\right)^{0,125}\left(\frac{d_{r}}{H_{i}}\right)^{0,2}\right)$ $\sigma'(C_{r}) = 12,3\%$	$C_{r} = 0.57 \cdot exp[-0.23 \cdot (d_{r}/H_{i})]$ $\sigma'_{Cr} = 26.5\%$
Dissipation	$C_{d} = 0,5 + 0,5 \cdot \cos\left(1,77\left(\frac{B}{L_{i}}\right)^{-0,1}\left(\frac{H_{i}}{L_{i}}\right)^{0,14}\left(\frac{d_{r}}{H_{i}}\right)^{0,45}\right)$ $\sigma'(C_{d}) = 10,5\%$	$C_{d} = 0,80 \cdot \exp[-0,27 \cdot (d_{r}/H_{i})]$ $\sigma'_{Cd} = 16,4\%$

Effect of Relative Submergence Depth d_r/H_i on Periods of Transmitted Waves

Description of Transmitted Wave Spectrum by Three Spectral Parameters

$$\begin{split} \mathbf{C}_{m_{0}} &= \frac{(m_{0})_{t}}{(m_{0})_{i}} & \left(= \mathbf{C}_{t}^{-2} = \frac{(H_{m_{0}})_{t}^{-2}}{(H_{m_{0}})_{i}^{-2}} \right) & \text{with} \quad \mathbf{C}_{t} = 1.0 - 0.83 \cdot \exp(-0.72 \cdot d_{r} \, / \, H_{i}) \\ \mathbf{C}_{m_{1}} &= \frac{(m_{1})_{t}}{(m_{1})_{i}} & \left(= \mathbf{C}_{m_{0}} \, / \, \mathbf{C}_{T_{01}} \right) & \text{with} \quad \mathbf{C}_{T_{01}} = \frac{(T_{01})_{t}}{(T_{01})_{i}} = 1 - 0.36 \cdot \exp(-0.58 \cdot d_{r} \, / \, H_{i}) \\ \mathbf{C}_{m_{-1}} &= \frac{(m_{-1})_{t}}{(m_{-1})_{i}} & \left(= \mathbf{C}_{m_{0}} \cdot \mathbf{C}_{T_{-10}} \right) & \text{with} \quad \mathbf{C}_{T_{-10}} = \frac{(T_{-10})_{t}}{(T_{-10})_{i}} = 1 - 0.24 \cdot \exp(-0.63 \cdot d_{r} \, / \, H_{i}) \\ & \text{where} \quad \mathbf{m}_{n} = \int S(f) f^{n} df; & \mathbf{T}_{01} = \frac{m_{0}}{m_{1}} & \text{and} \quad \mathbf{T}_{-10} = \frac{m_{-1}}{m_{0}} \end{split}$$

Breaking Criterion and Breaker Types

Breaker Types on Reefs: Energy Dissipation

* Non-Breaking waves: $\overline{C}_{d}=0.33$

Breaker Types on Reefs: Energy Dissipation

* Non-Breaking waves: $\overline{C}_d = 0.33$

Possible Application for Tsunami (Feasibility Study in Progress)

and the vulnerability of the flood prone area.

Hydraulic Performance of Wave Absorbers

Submerged Wave Absorbers as Artificial Reefs for Coastal Protection

Experimental and Theoretical Investigations for Storm Waves

References:

- Oumeraci, H.; Clauss, G.F.; Habel R. Koether, G. (2001): Unterwasserfiltersysteme zur Wellendämpfung. Abschlussbericht zum BMBF-Vorhaben "Unterwasserfiltersysteme zur Wellendämpfung". Final Research Report, (in German)
- Koether, G. (2002): Hydraulische Wirksamkeit und Wellenbelastung getauchter Eiinzelfilter und Unterwasserfiltersysteme für den Küstenschutz, PhD-Thesis, TU Braunschweig, Leichtweiss-Institut für Wasserbau, (in German)
- Oumeraci, H.; Koether, G. (2004): Innovative Reef for Coastal Protection Part I: Hydraulic Performance, Proc. 2nd joint German-Chinese Symposium on Coastal and Ocean Engineering.
- Oumeraci, H.; Koether, G. (2007): Innovative Reef for Coastal Protection Part II Wave Loading (in preperation)

Submerged Wave Absorbers for Beach Protection

Experimental Set-Up in Large Wave Flume Hannover (GWK)

Measuring Devices at the Wall

Contribution of Each Filter to Total Wave Damping

Analytical Flow Model

 \Rightarrow Velocity Potential

$$\phi_1 = \phi_i - \sum_{m=0}^{\infty} a_m \cos(\mu_m z) \exp(\mu_m x)$$

$$\phi_2 = \phi_i + \sum_{m=0}^{\infty} a_m \cos(\mu_m z) \exp(-\mu_m x)$$

S= Structure Parameter including drag, inertia and vortex losses

⇒ Matching Conditions at Wall
* Upper Zone A (Velocity and Pressure)

$$\frac{\partial \phi_1}{\partial x} = \frac{\partial \phi_2}{\partial x} \quad \text{and} \quad \phi_1 = \phi_2$$
* Lower Zone B (Velocity ∞ Pressure diff.)

$$\frac{\partial \phi_1}{\partial x} = \frac{\partial \phi_2}{\partial x} = -i \mathbf{S}(\phi_2 - \phi_1)$$

New Structure Parameter S for Submerged Filter

Calculated Reflected and Transmitted Wave Spectra by Reef

(a) Two filter System

Model Validation for Irregular Waves

Differences between Short and Longer Waves

Differences Related to the Involved Processes (1)

Wave Energy Distribution over the Entire Water column

Longer Period Waves (smaller h/L) (representative for tsunami)

Orbital Flow characteristics

Shorter Period Waves (larger h/L)

Longer Period Waves (smaller h/L)

Differences Related to the Involved Processes (3)

Energy Loss due to Flow Separation and Vorticies at Wall Crest

Shorter Period Waves (larger h/L)

Longer Period Waves (smaller h/L)

Differences Related to the Involved Processes (4)

Hydraulic Performance for Solitary Waves

Performance of Submerged impermeable single Wall subject to solitary waves

Performance of Two-Filter-Reef System for Solitary Waves

Performance of Three-Filter-Reef System for Solitary Waves

Surface Piercing Wave Absorbers as Seawalls and Breakwaters

Wave Damping at One Chamber System (OCS)

Front Wall of Wave Absorber in GWK

NA-5

Breaking Wave on Wave Absorber in GWK

Waves Absorbers Under Freak Wave Loading (Video)

Reflection Coefficient of OCS and MCS

Resultant Horizontal Wave Forces on OCS and MCS

an

Overall Load on One and Multi Chamber System

Soft Wave Barriers for Coastal Protection

References:

 Oumeraci, H.; Schüttrumpf, H.; Kortenhaus, A.; Kudella, M.; Möller, J.; Muttray, M. (2002): Large-Scale Model Tests for the Rehabilitation and Extension of the Coastal Protection of the North Beach Area in Norderney. Res. Report no. 853, LWI, TU Braunschweig, (in German)

Design (Computer Model)

Wave Damping Measures Norderney Island (North Sea)

Innovative Structure: Prototype (2)

Open Sea Wall on Island Norderney, North Sea (Video)

Application to Tsunami

- **Objective:** ⇒ To progressively weaken tsunami power without completely blocking inundation, but with additional benefit of broadly blocking floating debris.
- Application: \Rightarrow As multi-purpose structures everywhere where planting
of coastal forests is not feasible
 - ⇒ Especially appropriate for touristic and urbanized coastal areas where man-made protective structures should be fitted aesthetically into the local marine landscape.

a) Design (Computer Animation)

b) Built in Norderney (North Sea)

Geotextile Structures for Coastal Protection

Dune Reinforcement and Coastal Protection with Innovative Geotextile

Geotextile Sand Container for Beach Reinforcement

NINA - S

Geotextile Sand Containers for Coastal Protection and Dune Reinforcement: Experimental Set-Up in GWK

Geotextile Sand Containers: Tests in GWK (Video)

Hydraulic Stability Formulae for Geotextile Sand Containers

Improved Stability formulae by accounting for Deformation of GSC see PhD-Thesis of J. Recio (2007)

Geotextile Sand Containers: Example Applications

Narrowneck Reef-Ausralia Mega-Geo-Container (20m×4,80m)

Sand fill 250m³

colonised by reef organisms (only after few months)

