Organizational decision making and household response to tsunami evacuation warnings

> Michael K. Lindell and Carla S. Prater Texas A&M University Hazard Reduction & Recovery Center

A Quantitative Model of Evacuation Behavior

Forecast inland inundation distance

A Quantitative Model of Evacuation Behavior

- Step 1: Identify inundation zones for different tsunami magnitudes.
- Step 2: Assess evacuation route system (ERS) capacity.
 - Define the ERS.
 - Examine ERS geometry to identify the principal evacuation routes and their collector routes.
 - Estimate individual route capacities.

A Quantitative Model of Evacuation Behavior

- Step 3: Assess evacuation demand.
 - Calculate the number of households in each risk area and the number of evacuating vehicles per household.
 - Estimate the levels of warning compliance and spontaneous evacuation, by risk area.
 - Estimate trip generation times (TGTs).

Estimated Warning Compliance and Spontaneous Evacuation

Table 1: Smoothed percentages of households expecting to evacuate for hurricanes in Category One through Category Five, by Risk Area.

Risk	Category	Category	Category	Category	Category
Area	One	Two	Three	Four	Five
1	45.9	63.7	87.8	98.2	100.0
2	35.9	53.7	77.8	88.2	91.4
3	31.1	48.9	73.0	83.4	86.6
4	28.2	46.0	70.1	80.5	83.7
5	26.5	44.3	68.4	78.8	82.0

Estimated Trip Generation Times

- The evacuation time estimate (ETE) for a single household to evacuate is the sum of the time to
 - 1. Receive a warning,
 - 2. Prepare to evacuate,
 - 3. Travel on collectors to the primary evacuation route,
 - 4. Wait for access to the primary evacuation route, and
 - 5. Travel on the primary evacuation route.
- The time needed for *all* households to enter the ERS is defined by distributions of ETE components 1 and 2, which yield the trip generation time (TGT) distribution.

Estimated Trip Generation Times

Figure 1: Synthesized household TGT distribution

Determinants of Trip Generation Times

- Warning reception time is a function of:
 - Source, channel, message, receiver, and feedback factors

• Evacuation preparation time has two components

- Psychological preparation, and
- Logistical preparation.
- Both of these are affected by
 - Pre-impact community and household preparedness,
 - Warning message content, and
 - Situational conditions.

- Travel time from home via collector routes to the primary evacuation route (ETE component 3) is a function of the:
 - Distance from the home to the primary evacuation route, and
 - Average travel speed, which typically is about 30 mph (Witzig & Shilleen, 1987).

- The time required for evacuating vehicles to wait for access to the primary evacuation route (ETE component 4) can be computed by means of four recursive equations.
- (1) $\Delta D_t = \Delta A_t + Q_{t-1}$, where
 - $-\Delta D_t$ is the incremental traffic demand at time t,
 - ΔA_t is the incremental flow on arterial/collector routes at time *t*, and
 - Q_t is the size of the queue awaiting access to the primary evacuation route at time $t(Q_0)$ is assumed to be zero).

- (2) $P_t = Min(\Delta D_t, C)$, where
 - $-P_t$ is the primary evacuation route's traffic flow at time *t*, and
 - C is evacuation route capacity (which is often assumed to be 80% of normal capacity).

• (3)
$$E_t = P_t + E_{t-1}$$
, where

- E_t is the total number of vehicles that have entered the evacuation route system through time *t*.

• (4)
$$Q_t = \Delta D_t - C$$
.

- These four equations are solved repeatedly at successive time intervals t ≥ 1 until
 - All transients have entered the primary evacuation route, and
 - All households attempting to evacuate (compliant evacuees + spontaneous evacuees) have entered the primary evacuation route.

- Travel time on the primary evacuation route from the access point to the edge of the area at risk (ETE component 5) is a function of:
 - The distance from the access point to the edge of the area at risk, and
 - The average travel speed, which typically is about 30 mph (Witzig & Shilleen, 1987).

• This procedure

- Has been used to generate the evacuation time estimates (ETEs) currently used by the State of Texas for hurricane evacuations.
- Is currently being implemented in MS-Access/Visual Basic to develop an evacuation management decision support system (EMDSS) for research and training.

References

- Lindell, M.K. & Perry, R.W. (1992). Behavioral Foundations of Community Emergency Planning. Washington DC: Hemisphere Press.
- Tierney, K.J., Lindell, M.K. & Perry, R.W. (2001). Facing the Unexpected: Disaster Preparedness and Response in the United States. Washington DC: Joseph Henry Press
- Lindell, M.K. & Perry, R.W. (2004). Communicating Environmental Risk in Multiethnic Communities. Thousand Oaks CA: Sage.