Coupled Earthquake Engineering Simulations

Kyran D. Mish

Presidential Professor of Structural Engineering Director, Donald G. Fears Structural Engineering Laboratory University of Oklahoma, Norman, OK

Overview

- Three ongoing threads of coupled-physics interactions
- SPUR Integration Effort
 - NSF-funded basin/building inventory model
 - Soil-structure coupling using grid technology
 - Principals: Bielak (CMU), Fenves (Berkeley)
- LLNL Morrow Point Dam Analysis
 - Excellent solid-fluid interaction example
 - Foundation-dam-reservoir coupling via interoperability
 - Principals: Noble, McCallen, Loomis (LLNL)
- Terascale Framework
 - Prototype computational subsystem for NEES
 - Soil-structure liquefaction multiphysics by design
 - Principals: Taylor (Terascale), Muraleetharan (OU)

Characteristics of Physics Interactions

• Three forms of mathematical interactions

SPUR: Intregation by Grid

- One-way coupled basin-structure analysis
 - Precomputed basin results imposed on structural models via subgrid resolution sampling to determine foundation motions
- Ambitious attempt to use NSF-funded middleware technology
 - Harvest basin results at remote site
 - Analyze building inventory at other sites
 - Visualize by gathering all results and rendering

SPUR Results

• Schematic of Basin with ground-motions

Basin/Fault Geometry

Computed Ground Motion

FearsLab Donald G. Fears Structures Laboratory University of Oklahoma

LLNL Morrow Point Dam Analysis

- Complex coupling problem
 - Initial states computed using NIKE3D
 - Dam-reservoir interaction computed using DYNA3D hydrodynamics code
 - Assumption of vertically propagated shear waves for application of earthquake loads
 - Analysis included complex grouted shear key details in concrete dam
- Validated using empirical reservoir results

Morrow Point Geography

• Dam is about 200 miles SW of Denver

USGS 1983 Topographic Map

Generated IGES Surface for Mesh Generation

Analysis of Site, Dam, and Reservoir

• Interoperability: NIKE3D/DYNA3D data

F.E.M. with dam removed from view

Morrow Point Finite-Element Mesh

• Analyze foundation, dam, and fluid in lake

Terascale Multiphysics Simulations

- Full or loose coupling within framework
 - Framework: general-purpose computer science infrastructure to facilitate sharing of element technology, data, transient algorithms
 - Hides computer science details (e.g., scalability) from physics methods development
- Goals on NEES MRE
 - Provide scalable platform for FE computation
 - Demonstrate interdisciplinary capabilities

Terascale Results

• Sample Saturated/Unsaturated Dynamics

Summary

- Interdisciplinary research commonly results in physically coupled problems
- There are many ways to model the physical interactions of coupled problems
- There are many ways to design the computational infrastructure to handle the coupled physics
- Tsunami simulations may likely involve difficult physics, but simpler coupling

