Workshop for Integrated Tsunami Scenario Simulation at OSU

A Preliminary Integrated Tsunami Scenario Simulation

Toshitaka KATADA

Department of civil engineering, Gunma Univ.

Research Field:

Disaster mitigation by non-structural countermeasure

- / Evacuation Behavior / Disaster Information /
- / Disaster Education / Crisis Management /

Research Purpose

- Human damage mitigation from tsunami
- Developing a tool to diagnose tsunami evacuation plan in a coastal community

→ Integrated Tsunami Scenario Simulator

Tsunami Scenario Simulator consists of three model elements

Our Concern

Megathrust earthquake along Nankai Trough

✓ Subducting 4-5 cm /yr
✓ Magnitude Mw8.6
✓ Probability : 40~50 % within next 30 years

Estimated Tsunami Height

©Cabinet Office, Government of Japan

What is expected to happen ? Tsunami Hazard

Tsunami Scenario Simulator consists of three model elements

The Basic Structure of Simulation

The Disaster information transmission is described as a network generation

Expression of Oral Communication Network

The base network is composed of oral communication network. The media will be added to this base network.

Expression and Control of Oral Communication

The generation of oral communication network is controlled with 4 parameters.

Communication Parameters

/Communication Parameters reflects companionable level of neighbor community ex. Urban Community < Rural Community

 $\mathbf{P}_{1} = \boldsymbol{\pi} + (1 - \boldsymbol{\pi})\mathbf{d}$

 π :Reflection Bias Parameter d :Random Choice Probability \mathbf{P}_1 :Linkage Prob. Y to X

Mutual Linkage $\mathbf{P}_2 = \boldsymbol{\sigma} + (1 - \boldsymbol{\sigma})\mathbf{d}$

σ:Mutual Bias Parameter
d:Random Choice Probability
P, :Linkage Prob. X to Y

 π , σ : These Bias Parameters work against Random Linkage

Expression of Media (in case of Fixed Loudspeakers)

The Loudspeaker is combined into oral communication network

The Parameters for Loudspeaker

- #1 Location, #2 Audible Distance, #3 Audience Rating,
- #4 Announce Frequency and Each Timings

Description of Transmission Media and Its Functions

The functions of each media is described by using following parameters in the simulation.

Media	Parameter
Oral Communication	The Distribution of Number of Contacts, Walking-speed, The Distribution of Distance to Receiver, Commu. Para.
Telephone	The Distribution of Number of Contacts, Connecting Ratio
Patrol car, Fire Engine (With Loudspeaker)	The Route and Speed, Departure Time, Audible Distance, Audience Rating
Fixed Loudspeaker	Audible Distance, Audience Rating, Announce Frequency and Timings
TV, Radio	Audience Rating, Announce Frequency and Each Timings

Diagnosis with three model elements

Implementation at OWASE

City of Owase

Computed tsunami waveform at Owase Bay

Tsunami Disaster within the city of Owase Preliminary model result

Scenario

✓ Loud speaker : Issue the warning 5 minutes after the ground shaking stops
✓ Patrol cars : Issue the guidance 5 minutes after the ground shaking stops
✓ Mass media : Issue the warning 8 minutes after the ground shaking stops

Legend

• Evacuee

Assessment Estimation of tsunami evacuation time Preliminary model result

0

Km

Assessment Estimation of tsunami evacuation time Preliminary model result

Future Research

\checkmark Estimation of casualties

Interaction between model elements What is the best plan ?

✓ Model improvement

Where is model limit?

What are we trying to simulate ? Individuals or Regional characteristics ?

✓ Implementation

Where is the limit of evacuation plan?

For local government, for public

©PMEL/NOAA

Thank you