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1 Theoretical Background

The governing equations employed in this numerical model allow for the evolution of fully
nonlinear ( wave amplitude to water depth ratio = O(1) ) and dispersive waves over variable
bathymetry. Additionally, the generation of water waves by movement of the sea floor can be
examined. The governing equations are given in the Appendix, which is a summation of the
authors’ analytical and numerical work concerning depth-integrated wave theory, submarine
landslide modeling, and runup modeling. At this point in the development, modeling of
submarine landslides cannot be performed by the user without some guidance by the author.

The user has a choice of using two different numerical schemes; a high-order finite dif-
ference (FD) method and a high-order finite volume (FV) method. The FD option is the
”traditional” option, and is the scheme used by the original code. The FD option will provide
very high accuracy and relatively quick computations. The downside of the FD option is
that is it very sensitive to steep fronts and shocks, meaning that it is prone to crashing. The
FV option uses a high-order, shock-capturing, approximate Reimann solver for the leading-
order flux terms, and is generally extremely stable and accurate (see Appendix for details).
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This scheme will add numerical dissipation for situations with poorly resolved shocks; where
the wave is not resolved enough for the breaking model to turn on, the shock-capturing
properties of the solver will maintain the steep front and dissipate energy numerically. The
FV approach will also require 50 to 100 percent or more computational time, compared with
the FD solution.

It is strongly recommended that the user choose the FV option. All examples provided
with the source code use the FV option.

2 Numerical Background

The numerical model uses a fourth-order predictor-corrector scheme to march forward in
time. Leading-order spatial derivatives are approximated to fourth order accuracy as well,
while dispersive terms are second order accurate. The model is formally accurate to ∆t4 in
time and ∆x4, µ2∆x2 in space. The corrector segment of the procedure is implicit in time,
and uses iteration to arrive at a solution. Details of the numerical model are given in the
Appendix.

3 Files Included in Distribution

The following files are included in this package:

pCOULWAVE.exe : compiled Win-32 executable (from CVF, with MPICH libraries)
pCOULWAVE.out : compiled Linux executable (from PGI, 64-bit with LAM MPI libraries)
/source : COULWAVE source code; a series of Fortran 90 files
/docs: COULWAVE documents, including:
/docs/USERS MANUAL.pdf : Document including the theory, numerical approach, and
description of how to use the model (this documents)
/docs/COMPILATION INSTRUCTIONS.pdf : description of how to compile the code on a
number of platforms
/examples : includes a number of directories corresponding to example setups. See EXAM-
PLE README.txt for a description of the included files in each directory. See the users
manual for a description of each of the examples.
/examples/1D solitary wave up slope : recreation of Synolakis (1987) experiment
/examples/1D regular waves up slope : recreation of Svendson experiment
/examples/1D irregular waves up slope : TMA waves up a slope
/examples/1D regular waves over step : recreation of Dingman’s step experiment
/examples/1D irregular waves overtopping : TMA waves overtopping a levee with irregular
foreshore
/examples/2D solitary wave over shoal : recreation of Conical Island solitary wave runup
experiments
/examples/2D irregular waves bar break : 1D TMA waves over a nearshore bar with a break;
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rip current generation
/examples/2D irregular waves real beach : 2D TMA waves over real bathymetry

4 Compiling the Code

See the COMPILATION INSTRUCTIONS.pdf file, included with this package distribution.

5 Using the Numerical Code

The code in written in Fortran 90, and has been compiled using Compaq Visual Fortran and
Portland Group compilers. Other compilers, such as Intel, Lahey, and gfortran, have not
been tested thoroughly.

This manual will not provide significant details on how to run MPI based code. To run
as a serial simulation, one can run the executable as normal (e.g. double-click). To run in
parallel, some type of MPI-based external command will need to be called, with command
line options such as number of processors to use, nodes to use, etc. The most common format
is:

mpirun -np 16 ./pCOULWAVE.out

which would run the executable ”pCOULWAVE.out” on 16 processors.

A primitive user interface has been incorporated into the model, which allows the user to
set the parameters of the numerical simulation without having to edit the source code and
recompile. Therefore, any simulation can be run using the same compiled executable. The
parameters/options governing the simulation are described here, in the order in which they
appear when using the text interface. It is recommended that for the first few times running
the program, the user follow along with this manual while running the executable. The user
interface has been constructed such that all of the information contained in the user manual
below is also given, in the form of long comments and instructions, in the user interface as
well. This description will use the input files for the ”2D solitary wave over shoal” example.

The first option menu is:

******************************************************************************
******************************************************************************

pCOULWAVE
Copyright 2008 by Patrick Lynett, Texas A&M University

Modeling Wave Generation, Evolution, and Interaction with
Depth-Integrated, Dispersive Long Wave Equations

Parallel MPI-based COULWAVE
direct all comments and feedback to plynett@tamu.edu
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Contributors:
Khairil Irfan Sitanggang - MPI Parallelization

Dae-Hong Kim - Finite Volume/Riemanns Solver
******************************************************************************
******************************************************************************

Loading simulation parameters from data file, sim set
you will be able to change the numerical

parameters through menu choices.

******* Parallel/Domain Decomposition Setup **********
Number of Processors Selected: 1
ID 1: Automatic division of grids used
Number of divisions in x-dir: 1
Number of divisions in y-dir: 1
Are the above choices OK? - Enter ID to change or 0 for OK

By default, COULWAVE will attempt to divide up the total domain equally among the
processors. For example, if the program is run on 16 processors, the automatic division
would divide both the x and y range into 4 segments, providing 16 subdomains. If the
total number of processors cannot be divided equally, the two closest factors are used, with
the larger factor used to divide the x domain. For example, if 24 processors are used, the
automatic division choice will use 6 segments in the x domain and 4 in the y domain.

This automatic division does not take into account the possibility that the length of the x
and y domain may be unequal. Since the optimum subdomain shape is square, it is common
that the user will want to specify the grid divisions manually. For example, if the total
domain size was 800 points in the x direction and 200 points in the y, the user should choose
ID 1 (enter 1 and hit return), choose the ”Input domain divisions manually” option, and
input 8 divisions in the x-direction. This will force the model to divide the x domain into 8
segments and the y into 2 segments, which gives the optimum 100 by 100 point subdomain.

When the user is satisfied with the domain decomposition, enter 0 and hit return to proceed
to the next menu.

———————————————————————————————————————-

********* Current Simulation setup *********************
ID 1: Surface wave evolution
ID 2: 2D simulation
ID 3: Fully Nonlinear Simulation
ID 4: Arbitrary level approximation
ID 40: One-layer model
ID 41: Weakly Rotational Model
ID 42: Finite Volume Solver
ID 5: Solitary Wave Evolution

Are the above choices OK? - Enter ID# to change or 0 for OK
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Through ID 1, the user can choose between ”Surface wave evolution” and ”Wave generation
by submarine landslide.” The landslide choice will create a simulation examining surface
waves created by movement of the sea floor bottom. This option is not ready for general
use.

Through ID 2, the user run either a 1D (transect or profile) simulation or a 2D. Note that
the dimensions refer to horizontal coordinates; there is no vertical coordinate in this model.

Through ID 3, the user can choose either a Linear, Weakly Nonlinear (no nonlinear disper-
sive terms), or a Fully Nonlinear (with nonlinear dispersive terms) simulation. Compared to
Fully Nonlinear choice, the Weakly Nonlinear approximation will significantly reduce CPU
time (typically 15-25 % less for 2D), but may lead to large errors in the prediction of large
amplitude waves. For example, if prediction of wave shoaling - wave height grows as wa-
ter depth decreases - is desired, especially over mild slopes ( < 1/20 )the weakly nonlinear
assumption should not be used as it tends to overestimate the wave height. Note that the
Finite Volume Solver can only use the Fully Nonlinear equations.

Through ID 4, the user can choose the type of frequency dispersion model used. The
choices are Arbitrary level (e.g. Nwogu approach), depth-averaged, and shallow water (non-
dispersive). The Arbitrary level choice will make use of a set of governing equations based
on evaluation of horizontal velocity at an arbitrary depth, given as z = −βh, where the
optimum β = 0.531 for the one-layer (Boussinesq) model. The advantage of using the zβ

method is that the wave and group velocities of higher wave numbers (h/λ > .25) are more
accurately described. The disadvantage is increased computational cost. When using more
than one-layer, this option must be chosen. The evaluation levels for the two and more layer
models are given in the Appendix.

The depth-averaged choice will have decreased CPU time, as compared to using Arbitrary
level, but intermediate-depth waves may have significant phase and group speed errors.
Therefore, a depth-averaged simulation should be utilized if the user is fairly certain that all
wave numbers will be small, i.e h/λ < .2, or if computational speed is important (typically
5-15 % less for 2D). Note that the Finite Volume Solver can not use the depth-averaged
model.

The shallow water wave equations are non-dispersive, and are only accurate for very long
waves. Note that there are numerical packages in existence that will solve the shallow water
equations many times faster than this program.

Through ID 40, the user can choose to use the one-layer (conventional) Boussinesq-type
model, or the two-layer model of Lynett and Liu (2004). Note that the Finite Volume Solver
can not use the two-layer model.

Through ID 41, the user can choose whether to run an irrotational or weakly rotational
simulation. The weakly rotational model includes both weak horizontal and vertical vorticity
(See Kim et al paper in Appendix). Note that the Finite Volume Solver can not use the
irrotational model.

Through ID 42, the user can choose between the Finite Difference and Finite Volume solver.
The FD option is the ”traditional” option, and is the scheme used by the original code. The
FD option will provide very high accuracy and relatively quick computations. The downside
of the FD option is that is it very sensitive to steep fronts and shocks, meaning that it is
prone to crashing. The FV option uses a high-order, shock-capturing, approximate Reimann
solver for the leading-order flux terms, and is generally extremely stable and accurate (see
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Appendix for details). This scheme will add numerical dissipation for situations with poorly
resolved shocks; where the wave is not resolved enough for the breaking model to turn on, the
shock-capturing properties of the solver will maintain the steep front and dissipate energy
numerically. The FV approach will also require 50 to 100 percent or more computational
time, compared with the FD solution. It is strongly recommended that the user choose the
FV option.

Through ID 5, the user specifies the wave condition. The choices are solitary wave, sine
(regular) waves, or a wave spectrum. The solitary wave profile is the analytic solution to
the weakly nonlinear equations. Therefore, larger amplitude waves will not initially be of
permanent form when using this option in the Fully Nonlinear model. If the wave spectrum
choice is made, the user must create the input spectrum with the provided spectrum 1D.m
(for 1D spectra) or spectrum 2D.m (for 2D spectra) in Matlab as a pre-processing step.
These scripts will create a spectrum.dat file that will be read by COULWAVE. Using this
script file is discussed in the later section ”Creating a Wave Spectrum in Matlab.”.

———————————————————————————————————————-

The next option menu is:
****************************************************
Solitary Wave Evolution
ID 1. Wave height:(m) 5.7999998E-02
ID 2. Initial/characteristic depth:(m) 0.3200000
ID 3. Initial location of crest of soliton (m) 10.00000
ID 10. Incident angle of waves 0.0000000E+00

Are the above choices OK? - Enter ID# to change or 0 for OK

The above is the menu for the solitary wave simulation, which should be fairly straight-
forward to modify.

If one was running a sine wave simulation, the menu would appear as:

If one was running a spectral wave simulation, the menu would appear as:

And finally, if one was running a simulation driven by an input time series, the menu would
appear as:

———————————————————————————————————————-

The next option menu is:

****************************************************
ID 99. Load Topographical Data from Files

Are the above choices OK? - Enter ID# to change or 0 for OK

In this tutorial, the bathymetry / topography surface has been generated through a
pre-processing step, using the included bath loc.m Matlab script file. The Matlab script
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”bath loc” will create topography data from local files (again, see the file ”bath loc.m”
for details). The files created by these scripts are: ”x topo.dat, y topo.dat, f topo.dat,
size topo.dat”, and must be located in the same directory as the executable when running
the program. For more information on how to create a topography using the Matlab scripts,
see the later section ”Creating a Bathymetry in Matlab.” Note that the resolution of this ex-
ternally generated surface is independent of the resolution used by the hydrodynamic model.
COULWAVE will interpolate the depth grid onto the hydrodynamic grid using bi-linear
interpolation.

The user can also create a depth profile by inputting a series of (x,depth) nodes (maximum
of seven). Enter 99 and hit return, then choose ”Specify Profile by Giving Location/Depth
Nodes” and input the desired profile.

———————————————————————————————————————-

The next option menu is:

****************************************************
ID 1. Simulation time in seconds: 15.00000
ID 2. Time increment to write to file (s): 0.1000000
ID 3. Number of grid points per wavelength: 50
ID 4. Courant number = dx/dt/c o: 0.2500000
************* Sponge Layer Absorbers ******************
0 = Do Not Use Sponge Layer
1 = Use Sponge Layer
Left Wall Right Wall Top Wall Bottom Wall
ID 9 ID 10 ID 11 ID 12
0 0 0 0
ID 16. Display screen data at time step interval: 1

Are the above choices OK? - Enter ID# to change or 0 for OK

Here the user can change the physical simulation time, the time increment to write surface
data to file, the number of grid points per wavelength, the time step through the Courant
number, side wall boundary conditions, and the screen information display interval.

The surface data that are written to file include the free surface elevation, the horizontal
velocity vectors near mid depth and at the free surface, the wet/dry cell assignment, the
eddy viscosity, and the vertical vorticity evaluated at the free surface. These output files are
written in binary, but even so, for large grid simulations files can become excessively large if
a small time increment is chosen.

Points per wavelength is based on the 95% solitary wavelength, or the sine wavelength, or
the peak period wavelength for spectrum simulations.

The Courant number will determine the time step used in the model, and value of 0.5 will
typically yield stability and convergence, but for simulations with highly nonlinear waves, a
value as low as 0.1 may be required for stability. It is recommended that a value of 0.25 is
used by default.
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For absorbing boundary conditions, the user should turn the sponge layers on by changing
the appropriate ID to 1. If the ID is zero, that wall will act like a completely reflecting
vertical wall. Note that the left wall corresponds to x=0, the right wall to x=x end, the
bottom wall to y=0, and the top wall to y=y end. The sponge layer used here absorbs both
mass and energy, and has shown to be an excellent absorber of waves of all types, with
negligible reflection.

———————————————————————————————————————-

The next option menu is:
*************** TIME SERIES OUTPUT ****************

ID 1. Number of time series to write to file 0
ID 1000. Not performing spectral analysis on time series

Are the above choices OK? - Enter ID# to change or 0 for OK

Here, the user can specify locations, or stations, to write time series. Included in each time
series is free surface elevation, x-component velocity at mid depth, and y-component velocity
at mid depth. The user can also choose to have COULWAVE perform spectral analysis
on each of the time series, which provides mean and significant properties for the written
variables. Note that the time series locations are stored in the ASCII file ts locations.dat.
For simulations where many time series are written, it is often easier to edit this file outside
of the user interface, in, for example, Excel or Matlab.

———————————————————————————————————————-

The next menu is:

*************** PARAMETERIZATIONS ****************
ID 1. Wave Breaking Model implemented.
ID 3. Bottom friction included.
ID 4. Roughness height, ks (m): 9.9999997E-05
ID 5. Coefficient for subgrid eddy viscosity: 0.2000000

Are the above choices OK? - Enter ID# to change or 0 for OK

This menu covers the dissipation parameterizations. The first choice allows the user to
turn the breaking model off or on. Description of the breaking model is included in the
Appendix. The user can also turn bottom friction off or on. In the FD model, the bottom
friction is characterized through a Mannings roughness factor. In the FV model, the user
should input a roughness height, similar to that needed to use the Moody diagram. Lastly,
the subgrid eddy viscosity for the horizontal Smagorinsky eddy viscosity is needed. The
default for this parameter is 0.2, although it is expected to lie between 0.05 and 0.2. The
higher the coefficient, the larger the dissipation.
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———————————————————————————————————————-

The last menu is:

****************** DEFAULT VALUES *******************
ID 2. Width of sponge layer, in wavelengths 1.0000000
ID 3. Corrector stage convergence error 4.9999999E-06
ID 5. Max # of allowable iterations in corrector loop 15.00000
ID 6. Min # of iterations in corrector loop 2
ID 9. Smoothing depth profile using 4-point filter.
ID 11. First sponge layer coef 10.00000
ID 12. Second sponge layer coef 9.9999998E-03
ID 13. Shoreline can move? 0=Yes, 1=No 0

Are the above choices OK?-Enter ID# to change or 0 for OK

———————————————————————————————————————-

The default parameters are not recommended to be changed.

6 Error Messages and Descriptions

Error: Maximum number of iterations reached - corrector did not converge
Reason: The iterative corrector loop did not converge to the corrector stage convergence
error within the specified maximum number of iterations allowed.
Solution: This error is either telling the user that there is some instability in the solution or
that the values of the variables is so small that round-off errors and word length are playing
a role. For the later to be the culprit, the error would appear during the early time steps of
a sine or spectrum wave simulation. If this is not the case, plot the output in Matlab, and
examine the free surface for short wave instabilities, and see if they are linked with rapidly
changing bathymetry. If this appears to be the case, then smooth the bathymetry. If there
is apparently no cause for either the instabilities or the high number of iterations, contact
the author my email for assistance at plynett@tamu.edu.

SIMULATION ERROR - OVERFLOW
Reason: There is nothing occurring in the simulation. The likely cause is that the simulation
overflowed (a physical value was assigned a value of ”infinity”), whereby everything in the
simulation is forced equal to zero. This error is compiler specific - some compilers will force
everything equal to zero, some will display an error ”overflow” and stop the simulation. An
overflow is usually caused by an instability in the somewhere in the domain.
Solution: Plot the output that you have in Matlab, and look for any locations that show
instabilities. Look for locations with very steep slopes. Steep slopes or corners should be
slightly smoothed to eliminate the large first and second derivatives of water depth. If the
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simulation contains extremely high velocities (Froude numbers greater than 1), then lower
the time step and rerun the simulation. If there is apparently no cause for the overflow
contact the author my email for assistance at plynett@tamu.edu.

———————————————————————————————————————-

7 Known Problems and Deficiencies

Most simulation crashes occur due to very high Froude number flows, whether that is due to
very high velocities or very thin flows. The dissipation models included sometimes do prop-
erly model these flows, causing instabilities. The best current work arounds are to increase
the bottom friction, increase the eddy viscosity coefficient, decrease the grid resolution, and
to decrease the Courant number.

Also, with bottom slopes and curvatures that are extremely large, instabilities can result.
This is particularly the case with the FD model, where the maximum slope that one can
expect to get a stable result is approximately 0.2, and the maximum curvature is 1.0. For
the FV model, one can generally use values one order of magnitude larger.

With the FV model, the user should be careful when choosing to use the flux limiter
option. While turning this option on will make for an extremely robust model, it can
also add significant numerical dissipation, particulary for steep shoaling waves. To see the
impact of the limiter, the example ”1HD: Breaking regular wave runup and rundown” is a
good testing simulation.

———————————————————————————————————————-

8 Creating a Spectrum in Matlab

The included Matlab scripts ”spectrum 1D.m” and ”spectrum 2D.m” can be used to create
an input spectrum to be used in the numerical simulation. The ”spectrum 1D.m” file will
create a spectrum in one-horizontal dimension. This file creates a shallow-water based TMA
spectrum. The user must edit the first few lines of ”spectrum 1D.m” to input the peak
frequency, significant wave height, and the depth of these waves. The output from this script
file will be a data file called ”spectrum.dat”, which must be located in the same direction as
the executable in order to be loaded by the simulation. The file ”spectrum 2D.m” creates a
two-horizontal dimension spectrum. The two-dimensionality is setup as:

S(f, θ) = S(f)h(θ) (1)

where the h(θ) directional function used in the Matlab file is a simple cos2 spreading function.
Additionally, the user can load a local energy density spectrum data file using the given
Matlab files.
———————————————————————————————————————-
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9 Creating a Bathymetry in Matlab

The included Matlab script ”bath loc.m” can be used to create a bathymetry profile from
local data files, or by arbitrary creation by the used. This procedure is most easily learned
by examining the script file and the comments contained therein.
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10 Examples

10.1 1HD: Breaking solitary wave runup and rundown

Solitary wave runup and rundown was investigated experimentally by Synolakis (1986,1987).
In his work, dozens of experimental trials were performed, encompassing two orders of magni-
tude of solitary wave height. The beach slope was kept constant at 1:19.85. Many researchers
have used this data set to validate numerical models (e.g., Zelt, 1991; Lin et al., 1999). Syn-
olakis (1986) also photographed the waves during runup and rundown. One set of these
snapshots, for ε = 0.28, was digitized and compared with the numerical prediction, shown
in Figure 1. The wave begins to break between Figs. 1a) and 1b), and the runup/rundown
process is shown in Figs. 1c)-d). In Fig 1c), numerical snapshots from three other models are
plotted. The comparisons indicate a significant improvement over weakly nonlinear Boussi-
nesq equation results of Zelt (1991) and the NLSW results of Titov and Synolakis (1995).
Additionally, the numerical results by COULWAVE compare favorably to the two dimen-
sional (vertical plane) results of Lin et al. (1999), which makes use of a complex turbulence
model.
LOCATION OF INPUT FILES: /examples/1D solitary wave up slope

10.2 1HD: Regular wave evolution over a submerged shoal

The particular case is a good example of the benefits of using the two-layer model over
the one-layer (Boussinesq) model. The setup is taken from the experiments presented by
Dingemans (1994), who recorded free surface time series at numerous locations in front of
and behind the obstacle. The orientation of the bar is shown in the top subplot of Figure
2. The wave, as it approaches the bar, is nearly a long wave, with a kh=0.7 (wavelength
of 7.7 m in 0.86 m of water). This incident wave corresponds to Case A in Dingemans
(1994). As the wave shoals, it steepens and nonlinear transfers create superharmonics. The
superharmonics, while still shallow or intermediate water waves on top of the bar, become
deep water waves as they enter the deeper water behind. As discussed in Woo & Liu (2001),
significant wave energy (about 75% of the peak spectral amplitude) is present at kh ≈ 4
in the region behind the bar. For this reason, Boussinesq-type models (one-layer O(µ2

o)
models), whose linear dispersion accuracy limit is near kh ≈ 3, do not correctly predict the
wave field behind the bar.

Time series are taken at the four locations depicted in the top subplot, and both the
one- and two-layer models are compared with experimental data. The column on the left
shows the one-layer results, the column on the right, the two-layer. On top of the bar, at
location #1, both models are in agreement, and the two-layer model shows no benefit. This
is expected, as all of the dominant wave components at this location have kh values less
than 2.0. However as the wave components progress into deeper water, the one-layer model
becomes inaccurate. This is evident at locations #2-#4, where the one-layer model deviates
from the experimental results. The two-layer model, on the other hand, shows its strength
and predicts the wave field excellently.
LOCATION OF INPUT FILES: /examples/1D regular waves over step
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Figure 1: Breaking solitary wave runup and rundown on a planar beach at t(g/h)1/2 = a) 15,
b) 20, c) 25, d) 45. The solid line represents the numerical results and the points experimental
data. In c) the dashed line represents numerical results by Lin et al. (1999) (closest to
experiment and numerical results presented in this paper), the dotted line represents results
by Zelt (1991), and the dashed-dotted line results by Titov and Synolakis (1995).
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Figure 2: Comparison between numerical (solid lines) and experimental (dots) free surface
displacements for Case A of Dingeman (1994), where the experimental setup and gauge
locations are shown in the top subplot. The column on the left shows the numerical results
from the one-layer model, the right column shows the two-layer results. Time series locations
are indicated in the upper right of each subplot, corresponding to the gauge locations shown
in the top subplot.
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Figure 3: Experimental (dots) and numerical (line) wave height and mean free surface for
Hansen and Svendsen case 041041.

10.3 1HD: Breaking regular wave runup and rundown

Hansen and Svendsen (1979) performed a number of regular wave tests on plane slopes. One
of these experiments, trail 041041, is recreated numerically by COULWAVE. The waves were
generated in 0.36 m of water, and shoaled up a 1:34.26 slope. Time series were taken at
numerous locations along the wave flume; wave height and mean free surface elevation will
be compared in Figure 3.
LOCATION OF INPUT FILES: /examples/1D regular waves up slope

10.4 1HD: Breaking irregular wave runup and rundown

Here the identical setup as above is used, except that the regular wave generation is replaced
by irregular waves. The input spectrum is generated with the included spectrum 1D.m. A
snapshot of the output is provided in Figure 3. Note that this example setup also uses the
”Perform spectral analysis” option on the recorded time series. The result of this analysis
can be loaded with the included ”load spec.m” file.
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Figure 4: TMA spectral waves breaking and running up a plane slope.

LOCATION OF INPUT FILES: /examples/1D irregular waves up slope

10.5 1HD: Irregular wave overtopping

To demonstrate the models ability to simulate overtopping, this example examines a irregular
wave train approaching a bermed levee. The levee profile is created through the user interface
(not through external bathymetry files), and the input spectrum is created with the included
spectrum 1D.m.
LOCATION OF INPUT FILES: /examples/1D irregular waves overtopping

10.6 2HD: Solitary wave runup and rundown on a conical island

Briggs et al. (1994) presented a set of experimental data for solitary wave interaction around
a conical island. The slope of the island is 1:4 and the water depth is 0.32m. Three cases
were simulated, corresponding to solitary wave heights of 0.013 m (ε = 0.04) , 0.028 m
(ε = 0.09), and 0.058 m (ε = 0.18). In addition to recording free surface elevation at a half
dozen locations, maximum wave runup around the entire island was measured. This data
set has been used by several researchers to validate numerical runup models (e.g., Liu et al.,
1995; Titov and Synolakis, 1998; Chen et al., 2000). In this paper, free surface elevation is
compared at the locations shown in Figure 6. Gages #6 and #9 are located near the front
face of the island, with #9 situated very near the initial shoreline position. Gages #16 and
#22 are also located at the initial shoreline, where #16 is on the side of the island and #22

16



200 250 300 350 400 450 500

−10

−5

0

5
z 

(m
)

x (m)

Figure 5: TMA spectral waves overtopping a levee with a foreshore berm.

on the back face.
As mentioned, maximum runup was experimentally recorded. The vertical runup heights

are converted to horizontal runups, scaled by the initial shoreline radius, and plotted on
Figure 7. The crosshairs represents the experimental data, where Fig. 7a) is for Case 1.,
Fig. 7b) is for Case 2, and Fig. 7c) is for Case 3. The numerical maximum inundation is
also plotted, given by the solid line. The agreement for all cases is very good.
LOCATION OF INPUT FILES: /examples/2D solitary wave over shoal

10.7 2HD: Irregular wave evolution over a longshore bar with
breaks

This is an example showing how the model can generate wind-induced rip currents and
vorticity. A 1D TMA spectrum is generated, and is propagated over a longshore bar system
which consists of two breaks. A snapshot of the wave field is given in Figure 9. The return
current funnels through these gaps, created large eddies, shown in Figure 9.
LOCATION OF INPUT FILES: /examples/2D irregular waves bar break

10.8 2HD: Directional wave spectrum over nearshore bathymetry

Here, the input wave condition is a directional spectrum, created with the included spec-
trum 2D. Shown in Figure 10 is snapshot of the wave field, showing the directionality of the

17



Figure 6: Conical island setup. The gage locations are shown by the dots, and the wave
approaches the island from the left.
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Figure 7: Maximum horizontal runup, scaled by the initial shoreline radius, for case A a),
case B b), and case C c). Experimental values are shown by the stars and the numerical
results by the solid line.

incoming wave condition.
LOCATION OF INPUT FILES: /examples/2D irregular waves real beach
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Figure 8: Numerical snapshot from the bar-break simulation. The plot is showing the free
surface elevation.
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Figure 9: Numerical snapshot from the bar-break simulation, showing the formation of eddies
and rip currents. The plot is showing the vertical vorticity at the free surface.
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Figure 10: Instantaneous snapshot of sea surface elevation for nearshore bathymetry simu-
lation.

22



11 Source Code File List and Description

add bottom friction.f - adds bottom friction dissipation to the momentum equations, using
the Mannings form. This routine is only called when using the FD scheme. The bottom
friction dissipation for the FV scheme is found in FV efg calc.f90
add breaking.f - adds breaking dissipation to the momentum equations
add sponge.f - adds sponge layer dissipation to the momentum and continuity equations
allocate matrices.f - allocates all the ALLOCATABLE arrays used for the main program
bl define.f - define the outer boundary of the domain
boundary condition.f - enforces the boundary conditions, both for the moving shoreline and
the vertical walls surrounding the domain
calc Courant number.f - calculates the maximum local Courant number in the domain; can
be used for overflow debugging
calc corrector error.f - calculates both the maximum local error and global error; used to
determine whether or not the iterative corrector step has converged
calc flux.f - calculates the mass flux at a (x,y) given location
calc mass.f - calculates the total mass in the domain; can be used to check for mass conser-
vation
calc maxs means.f - calculates the maximums and mean values of free surface and velocity,
for writing to file at the simulation completion
calc overflow.f - can be used to determine if the simulation has crashed and force the simu-
lation to stop
calc vel DA.f - calculates the depth-averaged horizontal velocity components at a given (x,y)
location
calc vel z.f - calculates the three dimensional velocity components at a given (x,y,z) location
coulwave MPI.f - the main routine; includes the primary logic for the program
create depth.f - creates the depth grid for the local process
create file.f - creates and opens output files for the local process
create write xyth.f - creates and writes to file the x, y, and time vectors, and writes to file
the local depth grid.
decomp2d.f - determines the grid decomposition, or division, locations for a parallel simula-
tion
dhdt calc.f - determines the transients of the depth; used for landslide simulations
exchange2d.f - exchanges REAL boundary data among subdomains for a parallel simulation
exchange2d int.f - exchanges INTEGER boundary data among subdomains for a parallel
simulation
find dxdydt.f - determines the grid spacing and time step to be used by the simulation
find max hxx.f - finds the maximum bottom slope and curvature that exists in the domain
find max zeta.f - finds the maximum free surface elevation that exists in the domain
find ts indices.f - finds (i,j) indices for all the time series locations
find wavelengths.f - determines the wavelength for the various incident wave conditions
FV Riemanns4.f90 - the approximate Riemanns solver used by the FV method
FV allocate matrices.f - allocates all the ALLOCATABLE arrays used for the FV method
FV efg calc.f90 - calculates the right hand side of the continuity and momentum equations
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for 2D FV simulations
FV efg calc 1D.f90 - calculates the right hand side of the continuity and momentum equa-
tions for 1D FV simulations
FV estime.f90 - calculates cell interface properties, used vy the Riemanns solver
FV interp xei.f - polynomial-based cell interface interpolation routine
FV interp xoi.f - polynomial-based cell interface interpolation routine
FV interp yei.f - polynomial-based cell interface interpolation routine
FV interp yoi.f - polynomial-based cell interface interpolation routine
FV interpolations.f90 - limiter-based cell interface interpolation routine
FV ix iy eval.f - determines the shoreline boundary integer markers for the FV method
FV ldu.f90 - calculates the upper, diagonal, and lower matrices coefficients required for the
tridiagonal system (U to u)
FV limiters.f90 - the various limiters used in the FV method
FV var grp.f - the main logic for the FV method
FV var module.f - variable module used for the FV solution
global dims.f - finds the global dimensions of the simulation grid, performed prior to the
domain decomposition
init variables.f - a simple routine which zeros a matrix, can be used under certain compilers
that do not initialize a matrix.
initial condition.f - determines the initial free surface and velocity condition
internal source type2.f - called when using the internal source to generate waves
load eta in.f - called when using an input time series to force a simulation; converts that
time series in a format that can be used by the internal source generator
load inputs.f - loads the input parameters contained in sim set.dat
mainvar module.f - variable module used for the main program
move shoreline.f - routine that moves the shoreline location
set dispersion coefs.f - prefactors the linear parts of tridiagonal matrix coefficients; only used
by the FD method
set internal source coefs.f - calculates the various coefficients (amplitude and frequency)
needed by the internal source generator
set loop limits.f - sets start and end limits for the i,j loops
shift matrices back.f - shifts the main program matrices back one time step; called at the
end of the corrector step
solit cnoidal ic.f - calculates the solitary wave analytical solution
spectral analysis.f - a post-processing routine that performs a spectral (FFT) analysis on
recorded time series.
store previous iter.f - called by the iterative corrector step for the purpose of error calcula-
tion
tridiag.f - serial tridiagonal matrix solver
tridiagp.f - parallel tridiagonal matrix solver
user interface.f - the text-based user interface for COULWAVE
var grp.f - the main routine for the FD method; calculates the right hand side of the continu-
ity and momentum equations, calls the predictor and corrector, and sets the LDU coefficients
write disp info.f - a routine that can be used to display information to screen while the sim-
ulation is running
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write inputs.f - writes the input parameters to sim set.dat
write maxs means.f - writes the max and mean values, as calculated by calc maxs means.f
to file
write surfaces.f - writes surfaces of the main variables to file
write timeseries.f - writes time series data to file
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12 Appendix

The appendix consists of a a section detailing the properties of the model equations solved
by COULWAVE, a section describing the numerical details such as wave breaking, and lastly
a collection of papers describing the development of COULWAVE. The first paper, ”A multi-
layer modeling approach to wave modeling”, gives the mathematical details regarding the
derivation of the model equations solved by COULWAVE. The second paper, ”Modeling wave
runup with depth-integrated equations”, described the moving boundary algorithm employed
by COULWAVE. A third paper, ”A numerical study of submarine landslide generated waves
and runup”, shows how the model can be applied to the problem of waves generated by
seafloor disturbances. A fourth paper, ”A Depth-Integrated Model for Weakly Dispersive,
Turbulent, and Rotational Fluid Flows”, describes the weakly rotational derivation, and
presented the FV method. The paper references are:

Lynett, P. and Liu, P. L.-F. (2004). ”A Two-Layer Approach to Water Wave Modeling.”
Proc. Royal Society of London A. v. 460, p. 2637-2669.

Lynett, P., Wu, T.-R., and Liu, P. L.-F. (2002). ”Modeling Wave Runup with Depth-
Integrated Equations.” Coastal Engineering, v. 46(2), p. 89-107.

Lynett, P. and Liu, P. L.-F. (2002). ”A Numerical Study of Submarine Landslide Gener-
ated Waves and Runup.” Proc. Royal Society of London A. v. 458, p. 2885-2910

Kim, D.-H., Lynett, P. and Socolofosky, S.. (2008). ”A Depth-Integrated Model for
Weakly Dispersive, Turbulent, and Rotational Fluid Flows.” submitted to Ocean Modeling.
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13 Appendix A. Analysis of Multi-Layer Models

13.1 One-Layer Equation Model

For the one-layer model, the horizontal velocity vector is given as

U 1 = u1 − µ2
o

{
z2
1 − κ2

1

2
∇S1 + (z1 − κ1)∇T1

}
+ O(µ4

o) (2)

where

S1 = ∇ · u1, T1 = ∇ · (hu1) +
1

εo

∂h

∂t
(3)

The exact continuity equation can be rewritten approximately in terms of ζ and u1 as:

1

εo

∂h

∂t
+

∂ζ

∂t
+∇ · [(εoζ + h) u1]

−µ2
o∇ ·

{[
ε3

oζ
3 + h3

6
− (εoζ + h)κ2

1

2

]
∇S1

+

[
ε2

oζ
2 − h2

2
− (εoζ + h)κ1

]
∇T1

}
= O(µ4

o) (4)

Equation (4) is one of two governing equations for ζ and u1. The momentum equation for
u1 is

∂u1

∂t
+ εou1 · ∇u1 +∇ζ + µ2

o

∂

∂t

{
κ2

1

2
∇S1 + κ1∇T1

}

+εoµ
2
o

[
(u1 · ∇κ1)∇T1 + κ1∇ (u1 · ∇T1) + κ1(u1 · ∇κ1)∇S1 +

κ2
1

2
∇ (u1 · ∇S1)

]

+εoµ
2
o

[
T1∇T1 −∇

(
ζ
∂T1

∂t

)]
+ ε2

oµ
2
o∇

(
ζS1T1 − ζ2

2

∂S1

∂t
− ζu1 · ∇T1

)

+ε3
oµ

2
o∇

[
ζ2

2

(
S2

1 − u1 · ∇S1

)]
= O(µ4

o) (5)

This one-layer model, often referred to as the ”fully nonlinear, extended Boussinesq equa-
tions” in the literature (e.g. Wei & Kirby, 1995), has been examined and applied to a sig-
nificant extent. The weakly nonlinear version of (4) and (5) (i.e. assuming O(εo) = O(µ2

o),
thereby neglecting all nonlinear dispersive terms) was first derived by Nwogu (1993). Nwogu,
through linear and first-order nonlinear analysis of the equation model, recommended that
z1 = −0.531h, and that value has been, for the most part, adopted by other researchers
using these equations. Nwogu’s model was extended to ”full nonlinearity” by Liu (1994) and
Wei & Kirby (1995). There are some discrepancies between Liu’s and Wei & Kirby’s derived
equations, which can be attributed to a neglect of some nonlinear dispersive terms in Wei &
Kirby (Hsaio & Liu, 2002). The above, one-layer model equations (4) and (5) are identical
to those derived by Liu (1994).

The one-layer model has been used to study a number of 2HD real world phenomenon,
including rip currents (Chen et al., 1999), longshore currents (Chen et al., 2002), and a
variety of harbor problems (e.g. Shi et al., 2002). The numerical scheme employed for
these simulations is adopted here for the two-layer model, and will be described in detail in
Chapter 4.
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13.2 Two-Layer Equation Model

For the two-layer model, we can define the horizontal velocity vectors as

U 2 = u2 − µ2
2

{
z2
2 − κ2

2

2
∇S2 + (z2 − κ2)∇T2

}
+ O(µ4

2) (6)

U 1 = u1 − µ2
1

{
z2
1 − κ2

1

2
∇S1 + (z1 − κ1)∇T1

}
+ O(µ4

1, µ
2
1µ

2
2) (7)

where
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The exact continuity equation can be rewritten approximately in terms of ζ, u1, and u2 as:
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Equation (9) is one of three governing equations for ζ and un. The governing, momentum
equation for u1 is
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Determination of u2 does not require solving an additional momentum equation. With
interfacial boundary condition (continuous velocity) and the known velocity profiles (6) and
(7), u2 can be explicitly given as a function of u1:

u2 + µ2
2
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2
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2
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1

{
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1 − η2

2
∇S1 + (κ1 − η)∇T1

}
+ O(µ4

1, µ
2
1µ

2
2, µ

4
2) (11)

Thus, the lower layer velocity can be directly calculated with knowledge of the upper layer
velocity. Equations (9), (10), and (11) are the coupled governing equations for the two-layer
system.

13.2.1 Analysis of Model Equations

In this section, the properties of the two-layer model will be scrutinized and optimized. First,
it is shown that the two-layer model will reduce to the well-studied, ”extended” Boussinesq
model derived by Ngowu (1993). With the use of O(µ2

n) substitutions, namely:

u2 = u1 + O(µ2
n), (12)

we can eliminate one of the unknowns from our equation system. Rewriting (9) in terms of
u1 only, assigning d1 = ho, κ2 = −ho

d2
h, η = −h, and examining the weakly nonlinear form

of the equations, gives
1

εo

∂h

∂t
+

∂ζ

∂t
+∇ · [(εoζ + h) u1]
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6
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2
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= O(εoµ

2
o, µ4

o) (13)

where

S∗1 = ∇u1, T ∗
1 = ∇ · (hu1) +

1

εo

∂h

∂t
(14)

The momentum equation, (10), becomes

∂u1
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+ εou1 · ∇u1 +∇ζ + µ2
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∂

∂t

{
κ2

1

2
∇S∗1 + κ1∇T ∗

1

}
= O(εoµ

2
o, µ

4
o) (15)

This system for ζ and u1 is identical to the model derived by Ngowu. Additionally, the
nonlinear dispersive terms, which have been truncated for the sake of brevity in (13) and
(15), are identical to those derived by Liu (1994). For the rest of this paper, the ”extended”
Boussinesq model including all the nonlinear dispersive terms up to O(µ2

o), as given by Liu
(1994), will be referred to as the one-layer model.

For the rest of this section, the focus will be on analysis of the three-unknown, (ζ, u1, and
u2) two-layer system. Additionally for the rest of this section, all quantities discussed are in
dimensional form, with asterisks no longer applied. With the weak rotationality assumption,
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the momentum equation, (10), can be simplified, in dimensional form, to (see Hsiao and Liu,
2002)

∂u1

∂t
+

1

2
∇(u1 · u1) + g∇ζ +
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{
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2
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2]
}

= 0 (16)

This is the momentum equation that will be analyzed and numerically solved in this paper.
Before solving the system, the linear and nonlinear dispersion properties are examined. Let
us define the arbitrary evaluation levels and the boundary between the two layers as:

κ1 = α1h + β1ζ, η = α2h + β2ζ, κ2 = α3h + β3ζ (17)

where the coefficients α and β are arbitrary and user-defined. The one-horizontal dimension,
constant water depth, two-layer equations are rewritten in dimensional form, keeping, for
brevity, only linear terms. These equations are

∂ζ

∂t
+ δ1h
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∂x
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∂x
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− δ8h
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where
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−2α3
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1α2

6
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2

2
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2 + α2
3

2
− α1α2 + α3 − α1 (21)

The assumed dimensional solution form

ζ = εζ(0)eiθ + ε2ζ(1)e2iθ + ....

u1 = εu
(0)
1 eiθ + ε2u

(1)
1 e2iθ + .... u2 = εu

(0)
2 eiθ + ε2u

(1)
2 e2iθ + .... (22)

where θ = kx−wt, k is the wavenumber, w is the wave frequency, and ε is simply an ordering
parameter, are substituted into the derived equations.
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13.2.2 Linear Dispersion Relation

The first order (in ε) system yields the linear dispersion relation:

c2 =
w2

k2
=

gh [1 + N1(kh)2 + N2(kh)4]

1 + D1(kh)2 + D2(kh)4
(23)

where c is the wave celerity and the coefficients N1, N2, D1, and D2 are given in Appendix A.1
and are solely functions of α1, α2, and α3. The above dispersion relation will be compared
with both the [4,4] Pade approximation

c2 =
w2

k2
=

gh [1 + 1/9(kh)2 + 1/945(kh)4]

1 + 4/9(kh)2 + 1/63(kh)4
(24)

and the [6,6] Pade approximation

c2 =
w2

k2
=

gh [1 + 5/39(kh)2 + 2/715(kh)4 + 1/135135(kh)6]

1 + 6/13(kh)2 + 10/429(kh)4 + 4/19305(kh)6
(25)

of the exact linear dispersion relation:

c2
e =

w2

k2
=

g

k
tanh(kh) (26)

The Pade approximates utilized here are approximations of the hyperbolic tangent function,
where the numbers in the brackets represent the highest polynomial order of kh in the
numerator and denominator. Group velocity of the two-layer model equations, cg, can be
determined straightfowardly by taking the derivative of (23) with respect to k.

13.2.3 Vertical Velocity Profile

Let us define the function f1(z) as the horizontal velocity, with constant water depth, normal-
ized by its value at z = 0. This function is composed of two quadratic polynomial elements,
given by:

f1(z) =
1 + (kh)2

[
1
2
(z2/h2 − α2

1) + α2(α1 − z/h) + u
(0)
2 /u

(0)
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]
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1
2
α2

1 − α2α1 + u
(0)
2 /u

(0)
1 (α2 + 1)α1

] ,

for z ≥ η = α2h (27)

f1(z) = f1(η)
1 + (kh)2

[
1
2
(z2/h2 − α2

3) + (z/h− α3)
]

1 + (kh)2
[

1
2
(α2

2 − α2
3) + (α2 − α3)

] , for z < η = α2h (28)

From the linear equation system we know that,

u
(0)
1 =

gζ(0) [kh− δ8(kh)3]

hw [1 + D1(kh)2 + D2(kh)4]
(29)

u
(0)
2 =

gζ(0) [kh + δ7(kh)3]

hw [1 + D1(kh)2 + D2(kh)4]
(30)
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and thus the ratio u
(0)
2 /u

(0)
1 present in (27) can be evaluated. Similarly, the vertical velocity

profile, normalized by the velocity at the still water level, is given by f2(z):

f2(z) =
z/h− α2 + u

(0)
2 /u

(0)
1 (α2 + 1)

−α2 + u
(0)
2 /u

(0)
1 (α2 + 1)

, for z ≥ η = α2h (31)

f2(z) = f2(η)
z/h + 1

α2 + 1
, for z < η = α2h (32)

which is a piecewise linear function.

13.2.4 Linear Shoaling Properties

Based on linear theory, the exact shoaling gradient is given as:

ae
x

a
= Ae

x

hx

h
= −khtanh(kh)

[1− khtanh(kh)][1− tanh2(kh)]

{tanh(kh) + kh[1− tanh2(kh)]}2

hx

h
(33)

The linear shoaling properties of the two layer model are determined using the constancy of
energy flux concept, i.e

ax

a
= −1

2

(Cg)x

Cg

(34)

where Cg is the wave group velocity. First, the derivative of (23) is taken with respect to k,
giving:

w

g
cg =

(kh)S1

S2
2

(35)

where cg is the wave group velocity, and

S1 = D2N2(kh)8 + 2D1N2(kh)6 + (3N2 + D1N1 −D2) (kh)4 + 2N1(kh)2 + 1 (36)

S2 = D2(kh)4 + D1(kh)2 + 1 (37)

Taking the derivative of (35) with respect to x, noting that dw/dx=0, we have

w

g
(cg)x = (kh)x

S3

S3
2

(38)

where

S3 = D2
2N2(kh)12 + 3D1D2N2(kh)10 + (6D2

1N2 − 3D1D2N1 + 3D2
2)(kh)8

+(17D1N2 − 10D2N1 + D2
1N1 −D1D2)(kh)6 + (15N2 + 3D1N1 − 12D2)(kh)4

+(6N1 − 3D1)(kh)2 + 1 (39)

giving the ratio
(cg)x

cg

=
(kh)x

kh

S3

S1S2

(40)
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Taking the derivative of the dispersion relation (23), with respect to x, gives

kx

k
= −1

2

S4

S1

hx

h
(41)

where
S4 = D2N2(kh)8 + (3D1N2 −D2N1)(kh)6

+(5N2 + D1N1 − 3D2)(kh)4 + (3N1 −D1)(kh)2 + 1 (42)

Finally, the linear shoaling gradient of the two-layer model can be given:

ax

a
= −

(
1

2
− S4

4S1

)
S3

S1S2

hx

h
(43)

Note that this solution form is valid in any system for which the dispersion relation can be
expressed in the form of (23).

13.2.5 Second Order, Nonlinear Interactions: Steady Waves

Now we find the nonlinear corrections to the linear problem. The two-layer equations must
now be truncated to include quadratic nonlinear terms, as well as linear terms. Collecting
the O(ε2) terms from the substitution of the assumed steady wave, (22), into the nonlinear
equation system will yield an equation system in the general form:




b11 b12 b13

b21 b22 b23

0 b32 b33







ζ(1)

u
(1)
1

u
(1)
2


 =




R1

R2

R3




where b11, ..., b33 are functions of the linear δ coefficients, and R1, .., R3 are tedious functions
of the α and β parameters. This approximate expression can be compared to the second-
order solution:

ζ
(1)
Stokes =

kζ(0)2

4
[3coth3(kh)− coth(kh)] (44)

which is derived from Stokes theory.

13.2.6 Second Order, Nonlinear Interactions: Bichromatic Interactions

Examining a two-wave group, the free surface can be written as

ζ = εζ
(0)
1 ei(k1x−w1t) + εζ

(0)
2 ei(k2x−w2t) + ε2ζ

(1)
1 e2i(k1x−w1t) + ε2ζ

(1)
2 e2i(k2x−w2t)

+ε2ζ+ei(k+x−w+t) + ε2ζ−ei(k−x−w−t) (45)

where ζ+, ζ− are the sum and difference components of the two first order wave frequencies,
k∓ = k1 ∓ k2, and w∓ = w1 ∓ w2. Similar expressions can be given for un. To find the
sub- and super-harmonic amplitudes for the bichromatic wave group problem, the procedure
is the same as described above for the steady wave (single, first-order harmonic) problem.
The assumed solution (45) is substitued into the two-layer equation system. For each of the
forced second-order solutions, [(k1 − k2)x− (w1 − w2)t] and [(k1 + k2)x + (w1 − w2)t], the
matrix system is written in the same form as for the steady wave problem. The sum and
difference free surface components can be compared with those from Stokes theory, ζ∓Stokes,
which can be found in Shaffer (1996).
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Table 1: α values from linear optimization for two-layer model.
Ω (kh) α1 α2 α3 ∆Linear

3 -0.225 -0.420 -0.713 0.00008
5 -0.204 -0.383 -0.685 0.002

7.5 -0.175 -0.331 -0.646 0.009
10 -0.155 -0.294 -0.620 0.020

[4,4] Pade : -0.248 -0.459 -0.741 ——

13.2.7 Choice of Arbitrary Levels: Linear Optimization

Through examination of linear and nonlinear properties, the most accurate set of arbitrary
levels will be chosen in this section. First, the linear properties of the two-layer model will
be optimized, independent of nonlinearity. In the linear sense, the three levels are given
as κ1 = α1h, η = α2h, and κ2 = α3h, where κ1 and κ2 are the levels at which horizontal
velocities are evaluated in the upper and lower layers, and η is the location of the interface
between the layers. Of course, possible values are bounded by 0 ≥ α1 ≥ α2 ≥ α3 ≥ −1.
Defining a model accuracy, or model error, can be difficult and often can depend on the
specific physical problem being examined. For this analysis, a representation of the overall
error, including errors in wave speed, group velocity, and shoaling, is sought. The error will
be given by the minimization parameter ∆Linear:

∆Linear =
1

3




Ω∑

kh=0.1

|ce − c|
kh

Ω∑

kh=0.1

|ce|
kh

+

Ω∑

kh=0.1

|ce
g − cg|
kh

Ω∑

kh=0.1

|ce
g|

kh

+

Ω∑

kh=0.1

|Ae
x − Ax|
kh

Ω∑

kh=0.1

|Ae
x|

kh




(46)

where ce, ce
g, and Ae

x are the exact linear phase speed, group velocity, and shoaling gradient,
whereas c, cg, and Ax are the approximate values taken from the two-layer model derived
here. The right hand side is divided by three, so as to normalize the total error created
by the three different sources. All of the summations are divided by kh so that errors at
low wave numbers are more important than high wave number errors. The reason for this
weighting is a peculiarity of the optimization: it was possible to sacrifice low wavenumber
accuracy (kh <1.5) for accuracy at higher wavenumbers. Accuracy at low wavenumbers is
paramount, and hence the weighting. Summations are started at kh = 0.1 also because of
the kh weighting, and the subsequent need to avoid division by zero. The upper summation
limit, kh = Ω, is determined such that the minimum ∆Linear is less than some threshold.

∆Linear, which can be thought of as an overall relative error, will be set equal to four
arbitrary values. The behavior of the equation model at these error constraints will be scru-
tinized, and a ”proper” ∆Linear value will be recommended. A summary of the optimization
results is shown in Table 1. Also shown in last row of the table are the α values required
to create a [4,4] Pade approximation using the two-layer dispersion relation. Figures 11 -
14 show the linear properties for the cases given in Table 1. All of these figures also show
the dispersion properties corresponding to the [4,4] Pade. The [4,4] Pade yields excellent
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phase speed agreement up to kh values of 6, good group velocity agreement to kh near 3,
and an accurate shoaling gradient to a kh of 2. For the ∆Linear=0.002 case, we can see
that the linear dispersion properties (phase and group speed) lye inbetween a [4,4] and a
[6,6] Pade approximation. Linear shoaling is reproduced very well up to kh=5. Note that
the optimized α2 value for this case is the same as the value derived previously from the
heuristic analysis in section 4. Looking now at the ∆Linear=0.020 case, the model phase
speed has better deep-water accuracy than a [6,6] Pade approximation. The price paid for
this increased accuracy is a group velocity that oscillates around the exact linear group ve-
locity with an error amplitude of 1-2%, with the error starting near kh=1. Additionally, the
shoaling gradient diverges slightly from the exact solution at lower kh than the ∆=0.002
case, although the agreement is still reasonable for kh values to 8.

For the rest of the paper, all the results will employ the α values from the ∆Linear=0.002
minimization. This set was chosen based on its middle-of-the-road overall properties. It
can be expected that phase and group velocity will be well captured for kh values up to 8,
and linear shoaling will be excellent up to a kh of 5. It was decided that the ∆Linear=0.020
optimization was unacceptable due to the small, but low kh, errors in the group velocity
prediction. For long channel, wave group simulations, a 2% error in group velocity will
accumulate in time, eventually destroying the accuracy of a simulation. Practically, however,
it may be reasonable to employ the ∆Linear=0.020 optimization coefficients, depending on
the specifics of the problem.

The vertical velocity profiles predicted with the four different ∆Linear values are given in
Figures 15-18. Also plotted on these figures are the velocity profiles of Gobbi et al.’s (2000)
high-order derivation, which is a one-layer model, including terms up to O(µ4

o). The pattern
of error in the velocity profiles follows very closely to that shown in the phase velocity
comparisons. For the ∆Linear=0.00008 case, in Fig. 15, the kh=3 profile shows extremely
good agreement with linear theory, however as kh increases the agreement drops off. On
the opposite end for the ∆Linear=0.02 case, in Fig. 18, the velocity profile agreement is very
good even to kh=9. The cost of this high wavenumber accuracy is error at kh=3. This
high kh accuracy/ low kh error tradeoff is identical to what is seen with the phase velocity
comparisons.

13.2.8 Choice of Arbitrary Levels: Nonlinear Optimization

From the linear optimization of the previous section, the three levels can be given as:

κ1 = −0.204h + β1ζ, η = −0.383h + β2ζ, κ2 = −0.685h + β3ζ (47)

In this section, through examination of nonlinear properties, the β coefficients will be chosen.
The nonlinear optimization detailed in this section is similar to that performed by Kennedy
et al. (2001) while working with the one-layer model. Following the same procedure as the
linear optimization, a representation of the nonlinear error, including errors in the second
order free surface correction and subharmonic/superharmonic transfer functions is given by
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Figure 11: Properties of two-layer model with α1 = −0.225, α2 = −0.420, and α3 = −0.713
(∆Linear=0.00008). Comparison of wave speed and group velocity of the two-layer model
(dashed line) with the exact linear relation (solid line); the dotted line is the [4,4] Pade, and
the dashed-dotted line is the [6,6] Pade. The linear shoaling factor is shown in c), where the
[6,6] Pade is not shown.
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Figure 12: Properties of two-layer model with α1 = −0.204, α2 = −0.383, and α3 = −0.685
(∆Linear=0.002). Comparison of wave speed and group velocity of the two-layer model
(dashed line) with the exact linear relation (solid line); the dotted line is the [4,4] Pade, and
the dashed-dotted line is the [6,6] Pade. The linear shoaling factor is shown in c), where the
[6,6] Pade is not shown.
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Figure 13: Properties of two-layer model with α1 = −0.175, α2 = −0.331, and α3 = −0.646
(∆Linear=0.009). Comparison of wave speed and group velocity of the two-layer model
(dashed line) with the exact linear relation (solid line); the dotted line is the [4,4] Pade, and
the dashed-dotted line is the [6,6] Pade. The linear shoaling factor is shown in c), where the
[6,6] Pade is not shown.
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Figure 14: Properties of two-layer model with α1 = −0.155, α2 = −0.294, and α3 = −0.620
(∆Linear=0.020). Comparison of wave speed and group velocity of the two-layer model
(dashed line) with the exact linear relation (solid line); the dotted line is the [4,4] Pade, and
the dashed-dotted line is the [6,6] Pade. The linear shoaling factor is shown in c), where the
[6,6] Pade is not shown.
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Figure 15: Vertical profile of horizontal velocity (top row) and vertical velocity (bottom
row) under the crest of a sine wave for three different kh values, as given by linear theory
(solid line), the high-order model of Gobbi et al. (2000) (dotted line), and the 2-layer model
presented in this paper employing the ∆Linear=0.00008 coefficients (dashed line).
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Figure 16: Vertical profile of horizontal velocity (top row) and vertical velocity (bottom
row) under the crest of a sine wave for three different kh values, as given by linear theory
(solid line), the high-order model of Gobbi et al. (2000) (dotted line), and the 2-layer model
presented in this paper employing the ∆Linear=0.002 coefficients (dashed line).
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Figure 17: Vertical profile of horizontal velocity (top row) and vertical velocity (bottom
row) under the crest of a sine wave for three different kh values, as given by linear theory
(solid line), the high-order model of Gobbi et al. (2000) (dotted line), and the 2-layer model
presented in this paper employing the ∆Linear=0.009 coefficients (dashed line).
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Figure 18: Vertical profile of horizontal velocity (top row) and vertical velocity (bottom
row) under the crest of a sine wave for three different kh values, as given by linear theory
(solid line), the high-order model of Gobbi et al. (2000) (dotted line), and the 2-layer model
presented in this paper employing the ∆Linear=0.02 coefficients (dashed line).
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Table 2: β values from nonlinear optimization for two-layer model.
Ω (kh) β1 β2 β3 ∆Nonlinear

5 0.176 0.113 -0.013 0.013
10 0.124 -0.044 -0.068 0.036

the minimization parameter ∆Nonlinear:

∆Nonlinear =
1

2




Ω∑

kh=1

|ζ(1)
Stokes − ζ(1)|

kh

Ω∑

kh=1

|ζ(1)
Stokes|
kh

+

Ω∑

k1h=1

Ω∑

k2h=1

|ζ∓Stokes − ζ∓|
k1h + k2h

Ω∑

k1h=1

Ω∑

k2h=1

|ζ∓Stokes|
k1h + k2h




(48)

Note that the summation limit for the nonlinear error begins at kh=1.0. The extremely
large values of these nonlinear parameters at kh values less than one lead to poor error
quantifications at higher wavenumbers when using this type of error formulation. A summary
of the nonlinear optimization results is shown in Table 2.

Figure 19 shows the second-order free surface correction associated with these two sets
of β, along with the correction with no nonlinear optimization, i.e. β1 = β2 = β3=0. The
∆Nonlinear=0.013 shows excellent agreement to kh of 6, where the relative error is just over
5%. After this point, the error grows continuously. For the ∆Nonlinear=0.036 optimization,
5% errors are found at a kh near 3, although the error is less for high kh as compared
to the ∆Nonlinear=0.013 case. The bichromatic transfer amplitudes are shown in Figure
20, where the superharmonics are given in the upper left, and the subharmonics the lower
right. For the case with no nonlinear optimization, Fig. 20a), good agreement is only
found at small kh values for both super- and subharmonics. However, with some nonlinear
optimization, as shown in Fig. 20a) for ∆Nonlinear=0.013, the superharmonic amplitudes
become much more accurate. In fact, transfers where k1 and k2 are close show excellent
agreement, with the 5% error contour extending to k1=k2=5.5. However, subharmonic
transfer are relatively unaffected by the optimization, and lose accurate quickly for k1 values
greater than 3. With respect to the subharmonic amplitudes, the same can be said for
the ∆Nonlinear=0.036 optimization as well, shown in Fig. 20c). Accurate superharmonics
are predicted slightly better for this optimization, where the 5% error contour extends to
k1=k2=6. It is noted that these transfer plots show very similar behavior to those given
by Kennedy et al. (2001) for the nonlinear-optimized, one-layer model. In fact, the error
of the two-layer model, for the ∆Nonlinear=0.013 case, is approximately 1/2 of the one-layer
model error at all (k1, k2) combinations. As with the linear optimization, choosing which
set of β values are best to use depends on the specifics of the problem to be examined.
The authors choose to employ the set of coefficients from the ∆Nonlinear=0.013 case. This
set exhibits significantly better accuracy at all wavenumbers less than 5, which is a highly
desirable characteristic.

Nonlinear optimization is performed to second-order only. To optimize the model to third-
order, for example, best results would be achieved by continuation of the nonlinear expansion
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Figure 20: Sub- and superharmonic transfer amplitudes for bichromatic wave interactions,
ζ∓, relative to the Stokes solution, where subharmonics are shown in the lower right, and
superharmonics in the upper left. Shown in a) are the results with no nonlinear optimization
(β1 = β2 = β3=0), in b) the ∆Nonlinear=0.013 results, and the ∆Nonlinear=0.036 results in c).

of the evaluation levels, i.e. the third-order expansion for the layer boundary would take the
form

η = α2h + β2ζ +
(γ2ζ)2

h
(49)

The coefficients γ would then be tuned such that an optimal agreement with third-order
Stokes theory is obtained.

13.3 Three-Layer Equation Model

For the three-layer model, the horizontal velocity vectors are given in nondimensional form
as

U 3 = u3 − µ2
3

{
z2
3 − κ2

3

2
∇S3 + (z3 − κ3)∇T3

}
+ O(µ4

3) (50)

U 2 = u2 − µ2
2

{
z2
2 − κ2

2

2
∇S2 + (z2 − κ2)∇T2

}
+ O(µ4

2, µ
2
2µ

2
3) (51)

U 1 = u1 − µ2
1
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z2
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1

2
∇S1 + (z1 − κ1)∇T1

}
+ O(µ4

1, µ
2
1µ

2
2, µ
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2
3) (52)

where

S3 =
d3

ho

∇ · u3, T3 = ∇ · (hu3) +
1

εo

∂h

∂t
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d2

ho

∇ · u2, T2 = η2

(
b2

d3

S3 − b2
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)
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(
d1

d2

S2 − S1

)
+ T2 (53)
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Table 3: α values from linear optimization for three-layer model.
Ω (kh) α1 α2 α3 α4 α5 ∆Linear

10 -0.083 -0.156 -0.315 -0.494 -0.748 0.0003
20 -0.079 -0.149 -0.310 -0.492 -0.749 0.0005

[6,6] Pade : -0.13145 -0.24292 -0.42545 -0.62015 -0.83693 ——

The evaluation levels are defined as:

κ1 = α1h, η1 = α2h, κ2 = α3h, η2 = α4h, κ3 = α5h (54)

The continuity, momentum, and matching equations for the three-layer system are as given
in the previous chapter.

13.3.1 Choice of Arbitrary Levels: Linear Optimization

For the three- and more layer systems, only the linear dispersion properties will be examined
in this thesis. The dispersion relation for the three-layer model takes the form:

w2 =
k2gh

[
1 + (kh)2N

(3)
1 + (kh)4N

(3)
2 + (kh)6N

(3)
3

]

1 + (kh)2D
(3)
1 + (kh)4D

(3)
2 + (kh)6D

(3)
3

(55)

The coefficients N (3) and D(3) are tedious functions of the α values. These coefficients were
calculated using the symbolic math package Macsyma, and are given in Appendix A.

For this analysis, the minimization error, ∆Linear, is now given by:

∆Linear =
1

2




Ω∑

kh=0.1

|ce − c|
kh

Ω∑

kh=0.1

|ce|
kh

+

Ω∑

kh=0.1

|ce
g − cg|
kh

Ω∑

kh=0.1

|ce
g|

kh




(56)

where the shoaling error is no longer taken into account. A summary of the optimization
results is shown in Table 3. Only two Ω values (or ∆Linear values) are looked at, due to
the computational requirements of the optimization. The significant CPU time arises due
simply to the fact that the minimization is performed on a five-dimensional function, where
each of the five free parameters is determined to three significant digits. The phase and
group velocity of the three-layer model is shown in Figure 21. The three-layer model has
very good accuracy to kh ≈ 15, which is a significant improvement over the two-layer model.
In order for the three-layer model to be applied to practical engineering problems, shoaling
and nonlinear properties need to be examined. This examination is not done in this thesis,
however, the analysis is feasible, yet extraordinarily complex and tedious.
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Figure 21: Comparison of wave speed and group velocity of the three-layer model with the
exact linear relation; the dashed-dotted line is the [6,6] Pade, the dotted line is the [8,8]
Pade, the dashed line is the three-layer results with ∆Linear=0.0003, and the slide line is the
three-layer results with ∆Linear=0.0005.
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13.3.2 Vertical Velocity Profiles

Let us define the function f1(z) as the horizontal velocity, with constant water depth, nor-
malized by its value at z = 0. This function is composed of three quadratic polynomial
elements, given by:

f1(z) =

1 + (kh)2

{
1
2

(
z2

h2 − α2
1

)
+

(
α1 − z

h

) [
α2 − u

(0)
2

u
(0)
1

(α2 − α4)− u
(0)
3

u
(0)
1

(α4 + 1)

]}

1 + (kh)2

{
−1

2
α2

1 + α1

[
α2 − u

(0)
2

u
(0)
1

(α2 − α4)− u
(0)
3

u
(0)
1

(α4 + 1)

]} ,

for z ≥ η1 = α2h (57)

f1(z) = f1(η1)

1 + (kh)2

{
1
2

(
z2

h2 − α2
3

)
+

(
α3 − z

h

) [
α4 − u

(0)
3

u
(0)
2

(α4 + 1)

]}

1 + (kh)2

{
1
2
(α2

2 − α2
3) + (α3 − α2)

[
α4 − u

(0)
3

u
(0)
2

(α4 + 1)

]} ,

for η2 ≤ z < η1 (58)

f1(z) = f1(η2)
1 + (kh)2

{
1
2

(
z2

h2 − α2
5

)
+

(
z
h
− α5

)}

1 + (kh)2
{

1
2
(α2

4 − α2
5) + (α4 − α5)

} ,

for z < η2 = α4h (59)

From the linear equation system we have explicit expressions for u
(0)
n , and thus the ratios

u
(0)
2 /u

(0)
1 , u

(0)
3 /u

(0)
1 , and u

(0)
3 /u

(0)
2 can be evaluated.

Similarly, the vertical velocity profile, normalized by the velocity at the still water level,
is given by f2(z):

f2(z) =
z/h− α2 + u

(0)
2 /u

(0)
1 (α2 − α4) + u

(0)
3 /u

(0)
1 (α4 + 1)

−α2 + u
(0)
2 /u

(0)
1 (α2 − α4) + u

(0)
3 /u

(0)
1 (α4 + 1)

,

for z ≥ η = α2h (60)

f2(z) = f2(η1)
z/h− α4 + u

(0)
3 /u

(0)
2 (α4 + 1)

α2 − α4 + u
(0)
3 /u

(0)
2 (α4 + 1)

, for η2 ≤ z < η1 (61)

f2(z) = f2(η2)
z/h + 1

α4 + 1
, for z < η2 = α4h (62)

which is a piecewise linear function.
Figures 22 and 22 compare the three-layer vertical profile of velocity to linear theory. The

overall agreement is very good to near kh=15, where errors in the vertical velocity profile
become large. The horizontal velocity profile is well captured to kh ≈ 15.
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Figure 22: Vertical profiles of velocity for three-layer model (dashed line), compared with
linear theory (solid line). The top row shows horizontal velocity and the bottom vertical
velocity. The three-layer profiles use the α values from the ∆Linear=0.0003 optimization.
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Figure 23: Figure setup same as in Fig 22, except here showing high kh comparisons.
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13.4 Four-Layer Equation Model

For the four-layer model, the horizontal velocity vectors are given as

U 4 = u4 − µ2
4

{
z2
4 − κ2

4

2
∇S4 + (z4 − κ4)∇T4

}
+ O(µ4

4) (63)

U 3 = u3 − µ2
3

{
z2
3 − κ2

3

2
∇S3 + (z3 − κ3)∇T3

}
+ O(µ4

3, µ
2
3µ

2
4) (64)

U 2 = u2 − µ2
2

{
z2
2 − κ2

2

2
∇S2 + (z2 − κ2)∇T2

}
+ O(µ4

2, µ
2
2µ

2
3, µ

2
2µ

2
4) (65)

U 1 = u1 − µ2
1

{
z2
1 − κ2

1

2
∇S1 + (z1 − κ1)∇T1

}
+ O(µ4

1, µ
2
1µ

2
2, µ

2
1µ

2
3, µ

2
1µ

2
4) (66)

where

S4 =
d4

ho

∇ · u4, T4 = ∇ · (hu4) +
1

εo

∂h

∂t

S3 =
d3

ho

∇ · u3, T3 = η3

(
b3

d4

S4 − b3

d3

S3

)
+ T4

S2 =
d2

ho

∇ · u2, T2 = η2

(
b2

d3

S3 − b2

d2

S2

)
+ T3

S1 =
d1

ho

∇ · u1, T1 = η1

(
d1

d2

S2 − S1

)
+ T2 (67)

The evaluation levels are defined as:

κ1 = α1h, η1 = α2h, κ2 = α3h, η2 = α4h,

κ3 = α5h, η3 = α6h, κ4 = α7h (68)

The continuity, momentum, and matching equations for the four-layer system are as given
in the previous chapter.

13.4.1 Choice of Arbitrary Levels: Linear Optimization

The dispersion relation for the four-layer model takes the form:

w2 =
k2gh

[
1 + (kh)2N

(4)
1 + (kh)4N

(4)
2 + (kh)6N

(4)
3 + (kh)8N

(4)
4

]

1 + (kh)2D
(4)
1 + (kh)4D

(4)
2 + (kh)6D

(4)
3 + (kh)8D

(4)
4

(69)

The coefficients N (4) and D(4) are tedious functions of the α values. These coefficients were
calculated using the symbolic math package Macsyma, and are given in Appendix B.
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Table 4: α values from linear optimization for four-layer model.
Ω (kh) α1 α2 α3

20 -0.0575 -0.1080 -0.2086

α4 α5 α6 α7 ∆Linear

-0.3198 -0.4912 -0.6765 -0.8699 0.0003

As with the analysis of the three-layer model, the minimization error, ∆Linear, is given by:

∆Linear =
1

2




Ω∑

kh=0.1

|ce − c|
kh

Ω∑

kh=0.1

|ce|
kh

+

Ω∑

kh=0.1

|ce
g − cg|
kh

Ω∑

kh=0.1

|ce
g|

kh




(70)

where the shoaling error is no longer taken into account. A summary of the optimization
results is shown in Table 4. Only one Ω value (or ∆Linear value) is looked at, due to the
extreme computational requirements of the optimization. The significant CPU time arises
due to the fact that the minimization is performed on a seven-dimensional function, where
each of the seven free parameters is determined to four significant digits. Additionally,
expression of the four-layer dispersion relation is quite tedious. For example, coding only the
expression for N

(4)
4 in (69), which is a function of α1, ..., α7, requires 170 lines of FORTRAN

code. The α coefficients are determined to four significant digits for the four-layer equation
model, whereas in all the previous analysis only three digits are found, because the dispersion
relation is sensitive to these digits. This sensitivity is due to the high powers of kh in (69),
which require more precise coefficients to optimize the dispersion relation.

The phase and group velocity of the three-layer model is shown in Figure 24. The four-
layer model has very good accuracy to kh ≈ 25. Examination and optimization of shoaling,
and in particular nonlinear, properties of the four-layer model is nearly an insurmountable
task with current computational abilities, due to the number of free parameters and the
complexity of the functions to be optimized.

13.4.2 Vertical Velocity Profiles

Let us define the function f1(z) as the horizontal velocity, with constant water depth, nor-
malized by its value at z = 0. This function is composed of four quadratic polynomial
elements, given by:

f1(z) =

(
1 + (kh)2

{
1

2

(
z2

h2
− α2

1

)
+

(
α1 − z

h

) [
α2 − u

(0)
2

u
(0)
1

(α2 − α4)− u
(0)
3

u
(0)
1

(α4 − α6)− u
(0)
4

u
(0)
1

(α6 + 1)

]})
/

1 + (kh)2

{
−1

2
α2

1 + α1

[
α2 − u

(0)
2

u
(0)
1

(α2 − α4)− u
(0)
3

u
(0)
1

(α4 − α6)− u
(0)
4

u
(0)
1

(α6 + 1)

]}
,

53



5 10 15 20 25 30 35 40 45
0.99

1

1.01

1.02

1.03

1.04

1.05

C 
/ C

e

5 10 15 20 25 30 35 40 45
0.95

1

1.05

1.1

1.15

1.2

kh

C g / 
C ge

b)

Figure 24: Comparison of wave speed and group velocity of the four-layer model with the
exact linear relation; the dashed-dotted line is the [6,6] Pade, the dotted line is the [8,8]
Pade, the dashed line is the four-layer results with ∆Linear=0.0003.
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for z ≥ η1 = α2h (71)

f1(z) =

f1(η1)

1 + (kh)2

{
1
2

(
z2

h2 − α2
3

)
+

(
α3 − z

h

) [
α4 − u

(0)
3

u
(0)
2

(α4 − α6)− u
(0)
4

u
(0)
2

(α6 + 1)

]}

1 + (kh)2

{
1
2
(α2

2 − α2
3) + (α3 − α2)

[
α4 − u

(0)
3

u
(0)
2

(α4 − α5)− u
(0)
4

u
(0)
2

(α6 + 1)

]} ,

for α4h = η2 ≤ z < η1 = α2h (72)

f1(z) = f1(η2)

1 + (kh)2

{
1
2

(
z2

h2 − α2
5

)
+

(
α5 − z

h

) [
α6 − u

(0)
4

u
(0)
3

(α6 + 1)

]}

1 + (kh)2

{
1
2
(α2

4 − α2
5) + (α5 − α4)

[
α6 − u

(0)
4

u
(0)
3

(α6 + 1)

]} ,

for α6h = η3 ≤ z < η2 = α4h (73)

f1(z) = f1(η3)
1 + (kh)2

{
1
2

(
z2

h2 − α2
7

)
+

(
z
h
− α7

)}

1 + (kh)2
{

1
2
(α2

6 − α2
7) + (α6 − α7)

} ,

for z < η3 = α6h (74)

From the linear equation system we have explicit expressions for u
(0)
n , and thus the various

velocity ratios can be can be evaluated.
Similarly, the vertical velocity profile, normalized by the velocity at the still water level,

is given by f2(z):

f2(z) =
z/h− α2 + u

(0)
2 /u

(0)
1 (α2 − α4) + u

(0)
3 /u

(0)
1 (α4 − α6) + u

(0)
4 /u

(0)
1 (α6 + 1)

−α2 + u
(0)
2 /u

(0)
1 (α2 − α4) + u

(0)
3 /u

(0)
1 (α4 − α6) + u

(0)
4 /u

(0)
1 (α6 + 1)

,

for z ≥ η = α2h (75)

f2(z) = f2(η1)
z/h− α4 + u

(0)
3 /u

(0)
2 (α4 − α6) + u

(0)
4 /u

(0)
2 (α6 + 1)

α2 − α4 + u
(0)
3 /u

(0)
2 (α4 − α6) + u

(0)
4 /u

(0)
2 (α6 + 1)

,

for α4h = η2 ≤ z < η1 = α2h (76)

f2(z) = f2(η2)
z/h− α6 + u

(0)
4 /u

(0)
3 (α6 + 1)

α4 − α6 + u
(0)
4 /u

(0)
3 (α6 + 1)

,

for α6h = η3 ≤ z < η2 = α4h (77)

f2(z) = f2(η3)
z/h + 1

α6 + 1
, for z < η3 = α6h (78)

which is a piecewise linear function.
Figures 25 and 26 compare the three-layer vertical profile of velocity to linear theory. The

overall agreement is very good to near kh=25, where errors in the vertical velocity profile
become large.
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Figure 25: Vertical profiles of velocity for four-layer model (dashed line), compared with
linear theory (solid line). The top row shows horizontal velocity and the bottom vertical
velocity.
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Figure 26: Figure setup same as in Fig 25, except here showing high kh comparisons.
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13.5 Summary

Through linear and nonlinear optimization of the interface and velocity evaluation locations,
it is shown that the two-layer model exhibits accurate linear characteristics up to a kh ≈
8 and nonlinear accuracy to kh ≈ 6. This is a greater than two-fold extension to higher
kh over existing O(µ2

o) Boussinesq-type models, while maintaining the maximum order of
differentiation at three. A less thorough optimization of the three- and four-layer models is
undertaken, examining only phase and group velocity. This optimization indicates that the
three-layer model equations are accurate to kh ≈ 15 and the four layer-model to kh ≈ 25.
Figure 27 summarizes the results from this chapter. This figure gives the phase and group
velocity for the two-, three-, and four-layer models, as well as the traditional and high-order
Boussinesq models. The most striking feature of this plot is the disproportionate increase in
accurate from the two-layer model to the three-layer model. This feature certainly requires
a more in-depth investigation of the three-layer model in the near future.
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Figure 27: Comparison of wave speed and group velocity for numerous different models.
Curve (1) is the [2,2] Pade properties used by some Boussinesq models, (2) is the [4,4] Pade
of the high-order Boussinesq model, (3) is the two-layer model, (4) is the three-layer model,
and (5) is the four-layer model.
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14 Appendix B. Numerical Model for One- & Two-

Layer Systems

14.1 Numerical Scheme

In this section, a finite difference algorithm is presented for the general one- and two-layer
model equations. The structure of the present numerical model is similar to those of Wei
& Kirby (1995) and Wei et al. (1995). Differences between the model presented here,
for the one-layer system, and that of Wei et al. exist in the added terms due to a time-
dependant water depth and the numerical treatment of some nonlinear dispersive terms,
which will be discussed in more detail. A high-order predictor-corrector scheme is utilized,
employing a third order in time explicit Adams-Bashforth predictor step, and a fourth order
in time Adams-Moulton implicit corrector step (Press et al., 1989). The implicit corrector
step must be iterated until a convergence criterion is satisfied. The governing equations are
dimensionalized for the numerical model, and all variables described in this and following
sections will be in the dimensional form. Note that the dimensional equations are equivalent
to the non-dimensional ones with ε = µ = 1 and the addition of gravity, g, to the coefficient
of the leading order free surface derivative in the momentum equation.

14.2 Numerical Expressions for One-Layer System

To simplify the predictor-corrector equations, the velocity time derivatives in the momentum
equations are grouped into the dimensional form:

U = u +
κ2 − ζ2

2
uxx + (κ− ζ)(hu)xx − ζx [ζux + (hu)x] (79)

V = v +
κ2 − ζ2

2
vyy + (κ− ζ)(hv)yy − ζy [ζvy + (hv)y] (80)

where subscripts denote partial derivatives. Note that this grouping is different from that
given in Wei et al. (1995). The grouping given above in (79) and (80) incorporates nonlinear
terms, which is not done in Wei et al.. These nonlinear time derivatives arise from the nonlin-

ear dispersion terms ∇ [
ζ(∇ · (huα)t + htt

ε
)
]

and ∇
(

ζ
2

2∇ · uαt

)
, which can be reformulated

using the relation:

∇
[
ζ(∇ · (huα)t +

htt

ε
)

]
= ∇

[
ζ(∇ · (huα) +

ht

ε
)

]

t

−∇
[
ζt(∇ · (huα) +

ht

ε
)

]

∇
(

ζ

2

2

∇ · uαt

)
= ∇

(
ζ

2

2

∇ · uα

)

t

−∇ (ζζt∇ · uα) (81)

The author has found that this form is more stable and requires less iterations to converge
for highly nonlinear problems, as compared to the Wei et al. formulation. The predictor
equations are

ζn+1
i,j = ζn

i,j +
∆t

12
(23En

i,j − 16En−1
i,j + 5En−2

i,j ) (82)
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Un+1
i,j = Un

i,j +
∆t

12
(23F n

i,j − 16F n−1
i,j + 5F n−2

i,j ) + 2(F1)
n
i,j − 3(F1)

n−1
i,j + (F1)

n−2
i,j (83)

Vn+1
i,j = Vn

i,j +
∆t

12
(23Gn

i,j − 16Gn−1
i,j + 5Gn−2

i,j ) + 2(G1)
n
i,j − 3(G1)

n−1
i,j + (G1)

n−2
i,j (84)

where
E = −ht − [(ζ + h)u]x − [(ζ + h)v]y

+

{
(h + ζ)

[(
1

6

(
ζ2 − ζh + h2

)− 1

2
κ2

)
Sx +

(
1

2
(ζ − h)− κ

)
Tx

]}

x

+

{
(h + ζ)

[(
1

6

(
ζ2 − ζh + h2

)− 1

2
κ2

)
Sy +

(
1

2
(ζ − h)− κ

)
Ty

]}

y

(85)

F = −1

2
[(u2)x + (v2)x]− gζx − κhxtt − κthxt

+ (Eht + ζhtt)x − [E(ζS + T )]x −
[
1

2

(
κ2 − ζ2

)
(uSx + vSy)

]

x

− [(κ− ζ) (uTx + vTy)]x −
1

2

[
(T + ζS)2]

x
(86)

F1 =
ζ2 − κ2

2
vxy − (κ− ζ)(hv)xy + ζx[ζvy + (hv)y] (87)

G = −1

2
[(u2)y + (v2)y]− gζy − κhytt − κthyt

+ (Eht + ζhtt)y − [E(ζS + T )]y −
[
1

2

(
κ2 − ζ2

)
(uSx + vSy)

]

y

− [(κ− ζ) (uTx + vTy)]y −
1

2

[
(T + ζS)2]

y
(88)

G1 =
ζ2 − κ2

2
uxy − (κ− ζ)(hu)xy + ζy[ζux + (hu)x] (89)

and
S = ux + vy T = (hu)x + (hv)y + ht (90)

All first order spatial derivatives are differenced with fourth order (∆x4 = ∆y4) accurate
equations, which are five-point differences. Second order spatial derivatives are approximated
with three-point centered finite difference equations, which are second order accurate. The
second order spatial derivatives are taken to lower order accuracy because these derivatives
only appear in dispersive terms. The ”combined” dispersive-numerical error for the second
order derivatives is O(∆x2µ2

o), which is less than the error associated with dispersive trun-
cation error of the equations, O(µ4

o), as long as ∆x < h, which will generally be the case.
This will not be the case as h approaches zero, however, as this occurs the problem becomes
a shallow water problem, and µo approaches zero as well. Terms are evaluated at the local
grid point (i, j), and n represents the current time step, when values of ζ, u and v are known.
The above expressions, (85) - (90), are for the fully nonlinear problem; if a weakly nonlinear
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or non-dispersive system is to be examined, the equations should be truncated accordingly.
The fourth-order implicit corrector expressions for the free surface elevation and horizontal
velocities are

ζn+1
i,j = ζn

i,j +
∆t

24
(9En+1

i,j + 19En
i,j − 5En−1

i,j + En−2
i,j ) (91)

Un+1
i,j = Un

i,j +
∆t

24
(9F n+1

i,j + 19F n
i,j − 5F n−1

i,j + F n−2
i,j ) + (F1)

n+1
i,j − (F1)

n
i,j (92)

Vn+1
i,j = Vn

i,j +
∆t

24
(9Gn+1

i,j + 19Gn
i,j − 5Gn−1

i,j + Gn−2
i,j ) + (G1)

n+1
i,j − (G1)

n
i,j (93)

The system is solved by first evaluating the predictor equations, then u and v are solved
via (79) and (80), respectively. Both (79) and (80) yield a diagonal matrix after finite
differencing. The matrices are diagonal, with a bandwidth of three (due to three-point
finite differencing), and the efficient Thomas algorithm can be utilized. At this point in the
numerical system, we have predictors for ζ, u, and v. Next, the corrector expressions are
evaluated, and again u and v are determined from (79) and (80). The error is calculated,
in order to determine if the implicit correctors need to be reiterated. The error criteria
employed is a dual calculation, and requires that either

max

∣∣∣∣
wn+1 − wn+1

∗
wn+1

∣∣∣∣ <
ε

100
or

∑ |wn+1 − wn+1
∗ |∑ |wn+1| < ε (94)

be satisfied for the iteration to stop. In the above, w represents ζ, u, and v, and w∗ is the
previous iterations value. The expression on the left represents a maximum local error, while
the right is the average local error over the entire domain. The error threshold, ε, is set to
10−6. For the local error calculation, it is noted that inevitably there will be locations in the
numerical domain where values of the physical variables are close to zero, and applying this
error calculation to these points may lead to unnecessary iterations in the corrector loop.
Thus it is required that | ζ

a
|, | u,v

ε
√

gh
| > 10−4 for the corresponding error calculation to proceed.

Linear stability analysis for this numerical model as been performed by Wei (1995), as well
as Hsiao (2000) and Woo (2002), and will not be repeated here. This analysis tells that
∆t < ∆x

2c
to ensure stability, where c is the wave celerity.

For the numerical exterior boundaries, two types of conditions are applied: reflective and
radiation. The reflective, or no-flux, boundary condition for the Boussinesq equations has
been examined by previous researchers (e.g., Wei & Kirby, 1995), and their methodology is
followed here. For the radiation, or open, boundary condition, a sponge layer is utilized.
The sponge layer is applied in the manner recommended by Kirby et al. (1998).

14.3 Numerical Expressions for Two-Layer System

The velocity time derivatives in the momentum equation are grouped into the dimensional
form:

U = u1 +

[
κ2

1 − 2κ1η − ζ2 + 2ζη

2

∂2u1

∂x2

+

(
η
∂ζ

∂x
+ ζ

∂η

∂x
− κ1

∂η

∂x
− ζ

∂ζ

∂x

)
∂u1

∂x

]
= 0 (95)
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V = v1 +

[
κ2

1 − 2κ1η − ζ2 + 2ζη

2

∂2v1

∂y2

+

(
η
∂ζ

∂y
+ ζ

∂η

∂y
− κ1

∂η

∂y
− ζ

∂ζ

∂y

)
∂v1

∂y

]
= 0 (96)

where subscripts denote partial derivatives. The predictor equations are identical to the
one-layer equations:

ζn+1
i,j = ζn

i,j +
∆t

12
(23En

i,j − 16En−1
i,j + 5En−2

i,j ) (97)

Un+1
i,j = Un

i,j +
∆t

12
(23F n

i,j − 16F n−1
i,j + 5F n−2

i,j ) + 2(F1)
n
i,j − 3(F1)

n−1
i,j + (F1)

n−2
i,j (98)

Vn+1
i,j = Vn

i,j +
∆t

12
(23Gn

i,j − 16Gn−1
i,j + 5Gn−2

i,j ) + 2(G1)
n
i,j − 3(G1)

n−1
i,j + (G1)

n−2
i,j (99)

where
E = −ht − [(ζ − η)u1 + (η + h)u2]x − [(ζ − η)v1 + (η + h)v2]y

+

{[
ζ3 − η3

6
− (ζ − η)κ2

1

2

]
S1x +

[
ζ2 − η2

2
− (ζ − η)κ1

]
T1x

}

x

+

{[
η3 + h3

6
− (η + h)κ2

2

2

]
S2x +

[
η2 − h2

2
− (η + h)κ2

]
T2x

}

x

+

{[
ζ3 − η3

6
− (ζ − η)κ2

1

2

]
S1y +

[
ζ2 − η2

2
− (ζ − η)κ1

]
T1y

}

y

+

{[
η3 + h3

6
− (η + h)κ2

2

2

]
S2y +

[
η2 − h2

2
− (η + h)κ2

]
T2y

}

y

(100)

F = −1

2
[(u2

1)x + (v2
1)x]− gζx − [E(ζS1 + T1)]x −

[
1

2

(
κ2

1 − ζ2
)
(u1S1x + v1S1y)

]

x

− [
(κ1 − ζ) (u1T1x + v1T1y)

]
x
− 1

2

[
(T1 + ζS1)

2]
x

(101)

F1 = −(κ1 − ζ)
[
η

(
S2 − v1y

)
+ T2

]
x
− κ2

1 − ζ2

2
v1xy + ζζxv1y

+ζx

[
η

(
S2 − v1y

)
+ T2

]
(102)

G = −1

2
[(u2

1)y + (v2
1)y]− gζy − [E(ζS1 + T1)]y −

[
1

2

(
κ2

1 − ζ2
)
(u1S1x + v1S1y)

]

y

− [
(κ1 − ζ) (u1T1x + v1T1y)

]
y
− 1

2

[
(T1 + ζS1)

2]
y

(103)
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G1 = −(κ1 − ζ) [η (S2 − u1x) + T2]y −
κ2

1 − ζ2

2
u1xy + ζζyu1x

+ζy [η (S2 − u1x) + T2] (104)

and
S1 = u1x + v1y T1 = η(S2 − S1) + T2

S2 = u2x + v2y T2 = (hu2)x + (hv2)y + ht (105)

The fourth-order implicit corrector expressions for the free surface elevation and horizontal
velocities are

ζn+1
i,j = ζn

i,j +
∆t

24
(9En+1

i,j + 19En
i,j − 5En−1

i,j + En−2
i,j ) (106)

Un+1
i,j = Un

i,j +
∆t

24
(9F n+1

i,j + 19F n
i,j − 5F n−1

i,j + F n−2
i,j ) + (F1)

n+1
i,j − (F1)

n
i,j (107)

Vn+1
i,j = Vn

i,j +
∆t

24
(9Gn+1

i,j + 19Gn
i,j − 5Gn−1

i,j + Gn−2
i,j ) + (G1)

n+1
i,j − (G1)

n
i,j (108)

The lower layer velocities are determined from the equation:

u2 +

{
κ2

2 + η2 − 2ηκ1

2
u2xx + (κ2 − κ1) (hu2)xx + (η − κ1) ηxu2x

}
=

u1 +

{
(κ1 − η)2

2
S1x + (κ1 − η)

[
hxt + ηx

(
v2y − S1

)]

+
2ηκ1 − κ2

2 − η2

2
v2xy + (κ1 − κ2)(hv2)xy

}
(109)

v2 +

{
κ2

2 + η2 − 2ηκ1

2
v2yy + (κ2 − κ1) (hv2)yy + (η − κ1) ηyv2y

}
=

v1 +

{
(κ1 − η)2

2
S1y + (κ1 − η) [hyt + ηy (u2x − S1)]

+
2ηκ1 − κ2

2 − η2

2
u2xy + (κ1 − κ2)(hu2)xy

}
(110)

14.4 Energy Dissipation Mechanisms

Two forms of physical dissipation are considered in the numerical model for one-layer only,
wave breaking and bottom friction. These mechanisms modify the momentum equation:

∂u1

∂t
+ .... + Rf −Rb = 0 (111)

where Rf accounts for bottom friction dissipation and Rb for wave breaking. The evaluation
of these two additional terms will be discussed in this section. The dissipation terms have
only to date been utilized by the one-layer model, although two-layer dissipation will be
examined in future work.
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Table 5: Relation between C and f for various roughnesses.
C(s/m1/2) f

10 0.1
15 0.044
30 0.011
60 0.0027

14.4.1 Bottom Friction

Bottom friction is described in the quadratic form:

Rf =
f

H
ub|ub| (112)

where f is a bottom friction coefficient, typically in the range of 10−3 to 10−2 (e.g. Whitfor
and Thorton, 1996; Kobayashi et al., 1997), depending on the Reynolds number and seafloor
condition, H = h+ ζ, the total water depth, and ub is the horizontal velocity at the seafloor.
The above expression, (112), has been utilized in similar models (e.g., Chen at al, 1999) and
has a direct correlation to the Chezy coefficient, C. This relationship is:

f =
g

C2
(113)

where g is gravity. Table 5 shows a few conversions between C and f . The low C value of
10 can be thought of as the ”rough-beach limit” (Mader, 1990), and C values of 20-60 are
typical for river channels. Unless otherwise noted, the simulations presented in this thesis
use a bottom friction value of 0.005.

14.4.2 Wave Breaking Model

14.4.3 Previous Work

One of the most significant obstacles in the way of developing a practical numerical model
with depth-integrated equations is wave breaking. A depth-integrated model, by definition,
can only have a single elevation value of the water-air interface at any horizontal coordi-
nate, and thus phenomena such as wave overturning cannot be simulated. Along the same
lines, very strong horizontal vorticity typically accompanies breaking, which an irrotational
or weakly rotational model will not capture. Most depth-integrated derivations use as an
initial assumption inviscid flow (those in this thesis included), and therefore do not have
any means to dissipate energy. These three reasons constitute the major problems with
wave breaking in depth-integrated models, although the first given, that of the impossibility
of simulating wave-overturning, is the only unapproachable one of the three. Thus, it will
always be necessary to parameterize the large-scale features of wave breaking when using
depth-integrated equations.

Two distinct approaches to simulating the effects of wave breaking with depth-integrated
models exist: numerical dissipation and ad-hoc addition of dissipative terms to the mo-
mentum equation. Numerical dissipative approaches most notably include shock capturing
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schemes. In these schemes, energy dissipation is related to the local smoothness of the solu-
tion, which is of course strongly related to the grid length near the shock. Most recently, Li
and Raichlen (2002) used the weighted essentially non-oscillatory shock capturing scheme,
adapted from gas dynamics research, to model solitary wave runup. The results presented in
Li and Raichlen are excellent, among the best numerical-experimental comparisons to date.
With shock capturing methods, the numerical results tend to be very smooth. However, the
dissipation is entirely numerical, and although the general form of the dissipative terms may
be of the proper physical form, the dissipation will inevitable be related to the grid length
and time step.

Utilizing post-derivation-added dissipation terms to the momentum equation removes this
dissipative dependence on numerical parameters. However, these added terms are ad-hoc
terms, and will contain coefficients that must be obtained based on comparison with exper-
iment. Whether the numerical or ad-hoc approach is more desirable will depend entirely on
the individual preference of the researcher. In this thesis, the addition of ad-hoc dissipation
terms is employed, as it is the preference of this author to avoid numerical dissipative and
dispersive enhacements/errors whenever possible.

14.4.4 Breaking Scheme and Validation

The breaking scheme employed in this thesis work closely follows the scheme presented in
Kennedy et al. (2000). Description of this particular breaking scheme can also be found in
Chen et al. (2000), which is a companion paper to Kennedy et al.. The scheme is developed
from an ”eddy viscosity” approach, where a user-defined formulation for an eddy viscosity
is developed based soley on agreement with experimental data. The eddy viscosity is part
of a momentum conserving, ad-hoc dissipative term, Rb = Rbxi + Rbyj, where:

Rbx =
1

H

{
[ν(Hu1)x]x +

1

2
[ν(Hu1)y + ν(Hv1)x]y

}
, (114)

Rby =
1

H

{
[ν(Hv1)y]y +

1

2
[ν(Hv1)x + ν(Hu1)y]x

}
, (115)

ν is the eddy viscosity, and H = h + ζ, the total water depth. The above expressions are
identical to those found in Kennedy et al.. Eddy viscosity is calculated as:

ν = BHζt (116)

The purpose of the variable B is to ensure a smooth transition between breaking and non-
breaking states. The formulation developed and employed by Kennedy et al. is:

B =





δ, ζt ≥ 2ζb
t

δ
(
ζt/ζ

b
t − 1

)
, ζb

t < ζt ≤ 2ζb
t

0, ζt ≤ ζb
t

where δ is some amplification factor and the parameter ζb
t determines the onset and stoppage

of breaking. ζb
t is evaluated as

ζb
t =

{
ζ

(F )
t , t− to ≥ T b

ζ
(I)
t + t−to

T b

(
ζ

(F )
t − ζ

(I)
t

)
, 0 ≤ t− to < T b
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Table 6: Experimental wave characteristics for the Hansen and Svendsen tests.
Trial Period (s) Height (cm)

031041 3.33 4.3
041041 2.5 3.9
051041 2.0 3.6
061071 1.67 6.7
A10112 1.0 6.7

where ζ
(I)
t is the initial free surface transient threshold that must be exceeded for a breaking

event to initiate, ζ
(F )
t is the minimum transient required for a breaking event to continue,

t is the local time, to is the time breaking started, and T b is a transition time. There is
no physical evidence to support this formulation for the eddy viscosity, ν, and it is chosen
entirely on its ability to recreate experimental results to an accurate degree. Up to this point,
the breaking model is identical to that of Kennedy et al.. The difference lies in the evaluation
of the free parameters, of which there are four. In Kennedy et al., the parameters are based
on the linear long wave speed, i.e. ζ

(I)
t = 0.65

√
gh. Determination of the parameters in this

fashion is undesirable for the model presented in this thesis, because this model calculates
the free surface as it runs up a shoreline, where h is negative. Thus, evaluation of the
parameters in areas where h < 0 would require an additional specification. The simplest
method to eliminate this problem is to utilize the nonlinear long wave speed =

√
gH. Using

the nonlinear long wave speed also requires repeating all of the wave breaking analysis in
Kennedy et al., to determine to optimum value of the four free parameters.

Hansen and Svendsen (1979) performed a number of regular wave tests on plane slopes.
Five of these experiments are recreated numerically, described in Table 6. The waves were
generated in 0.36 m of water, and shoaled up a 1:34.26 slope. Time series were taken
at numerous locations along the wave flume; wave height and mean free surface elevation
will be compared here. Through trial and error minimization of the difference between
numerical and experimental results, the following set of free parameters is chosen: δ = 6.5,
ζ

(I)
t = 0.65

√
gH, ζ

(F )
t = 0.08

√
gH, and T b = 8.0

√
H/g. Figures 28 - 32 show the numerical

- experimental comparisons for the five cases. For all cases, the agreement is very good,
with all exhibiting significant improvement over the corresponding comparisons in Kennedy
et al.. There is a clear pattern in the numerics to predict the initiation of breaking slightly
earlier (in deeper water) than occurred in the experiments. This pattern is also evident in
the Kennedy et al. results, where it is postulated to be caused by the known overprediction
of nonlinear superharmonics by the one-layer model.

There are a few other minor differences between the breaking model implementation pre-
sented in this thesis and that of Kennedy et al.. In Kennedy et al., the eddy viscosity as
calculated by (116) is spatially filtered using a three-point filter before it is inserted into
(115). Filtering the eddy viscosity was found to have no advantageous effect when using
the modified formulation presented in this thesis, and was not performed. Additionally, use
of a spatial filter, filtering the calculated free surface and velocity values, was found to be
unnecessary, and no filtering has been performed in any of the simulations presented in this
paper.
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Figure 28: Experimental (dots) and numerical (line) wave height and mean free surface for
Hansen and Svendsen case 031041.
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Figure 29: Experimental (dots) and numerical (line) wave height and mean free surface for
Hansen and Svendsen case 041041.
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Figure 30: Experimental (dots) and numerical (line) wave height and mean free surface for
Hansen and Svendsen case 051041.
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Figure 31: Experimental (dots) and numerical (line) wave height and mean free surface for
Hansen and Svendsen case 061071.
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Figure 32: Experimental (dots) and numerical (line) wave height and mean free surface for
Hansen and Svendsen case 10112.
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When examining the comparisons in Figures 28 - 32, one needs to keep in mind the
numerical treatment of the shoreline. Accurate modeling of the wave reflection off the beach
is an integral part of accurate prediction of the wave height, particularly near the break
point. In the next section, the moving boundary scheme used by the numerical model is
described.
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15 Appendix C. Derivation and Numerical Model for

Weakly Rotational, Finite Volume Method

15.1 Dimensionless Governing Equations

The basic approach for including viscous effects into the Boussinesq equations is to derive
the governing equations not from Eulers equations but from the Navier-Stokes equations.
For the derivation of the approximate, depth-integrated model, a non-dimensionalization, or
scaling, of the primitive equations is the first step. Consistent with previous Boussinesq-type
approaches, it is expected that the leading order solution will be shallow water, and thus a
long wave scaling is used. A spatial region is characterized by a typical water depth ho, a
horizontal length scale `o, wave amplitude ao, and a time scale `o/

√
gho. With the variables,

the following dimensionless variables and a parameter can be introduced.

(x, y) =
(x′, y′)

`o

, z =
z′

ho

, t =
t′
√

gho

`o

, h =
h′

ho

, ζ =
ζ ′

ho

,

(U, V ) =
(U ′, V ′)√

gho

, W =
W ′

µ
√

gho

, p =
p′

ρgho

, µ =
ho

`o

(117)

where (x′, y′) denotes horizontal axes, z′ is a vertical axis, t′ is time, h′ is water depth, ζ ′ is
water surface elevation, (U ′, V ′) are horizontal velocities, W ′ is a vertical direction velocity,
and p′ is a pressure. The g and ρ are a gravitational acceleration and density, respectively.
All these variables are dimensional. The µ is a standard parameter for a scale analysis of
long waves.

For this study, due to the depth-integration and resulting loss of flow details in the vertical
plane, it will be reasonable to divide the turbulent eddy viscosity into horizontal and vertical
components, as is commonly done for shallow mixing studies. The Smagorinsky model (1963)
will be used for the horizontal eddy viscosity νh

t
′
, that is, νh

t
′
= (Cs∆

′)2 √
2S ′ijS

′
ij where Cs

is a constant, the S ′ij is a strain rate tensor and ∆′ is the grid size. By applying the above
scalings to the horizontal eddy viscosity, it can be expressed as

νh
t

′
= C2

s ∆2ho

√
gho

√(
∂u

∂z

)2

+ 2µ2

(
∂u

∂x

)2

+ 2µ2

(
∂w

∂z

)2

+ · · · · · · (118)

Equation (2) is rewritten in the compact form

νh
t

′
= αho

√
ghoν

h
t (119)

where α = C2
s ∆2. For the vertical eddy viscosity, we presume a shallow flow formulation,

where the vertical turbulence is driven by the bottom shear only. The expression νv
t
′ =

ChH
′u′∗ is used where the H ′ is the total water depth and the u′∗ is the friction velocity. The

vertical eddy viscosity can be non-dimensionalized as

νv
t
′ = βho

√
ghoHub = βho

√
ghoν

v
t (120)
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where ub represents a near-bottom free stream velocity such that u∗ = C∗ub and β is equal
to ChC∗.

Finally, the continuity equation and the Navier-Stokes equations can be scaled with the
equations (1), (3) and (4):

∇ ·U +
∂W

∂z
= 0 (121)

∂U

∂t
+ U · ∇U + W

∂U

∂z
+∇p = αµ∇ · (νh

t ∇U
)

+
β

µ

∂

∂z

(
νv

t

∂U

∂z

)
(122)

µ2∂W

∂t
+ µ2U · ∇W + µ2W

∂W

∂z
+

∂p

∂z
+ 1 = αµ3∇ · (νh

t ∇W
)

+ βµ
∂

∂z

(
νv

t

∂W

∂z

)
(123)

15.2 Derivation of the Depth Integrated Momentum Equations

This derivation will be of perturbation type, and a small parameter assumption must be
made. Looking to the vertical momentum equation (7), it is assumed that O(µ2) = O(µβ) ¿
1, yielding

∂p

∂z
+ 1 = O(µ2, µβ) (124)

The above indicates that to leading order, the pressure is hydrostatic, which will permit the
standard depth integration to obtain a long wave model. Thus the derived model will be
restricted to weakly dispersive waves and flow with weak vertical turbulence.

Typically, the perturbation of the inviscid primitive equations is performed using µ2 as the
small parameter. In these inviscid cases, where of course α = β = 0, the small parameter
choice essentially required by (8) is clear. Here, with viscosity, the choice is not clear, as
either µ2 or µβ could be used as the small parameter. Mathematically, there is no reason to
choose one over the other, as in fact both would result in the same final equations. For the
derivation presentation, µ2 will be used, and this issue of ambiguity will be addressed later.

Physical values are expanded with power series following

f =
N∑

k=1

µ(2n)fn (125)

where f = p, U, V, W and µ2 assumed to be small. Substituting this expansion into (7) or
(8) gives po as hydrostatic. It follows that ∇po is independent of z. This implies that in
the horizontal momentum equation, all the other leading order should also be z-independent
functions (Dellar and Salmon, 2005). Consequently, U o becomes U o(x, y, t).

At the water surface and at the bottom, the following boundary conditions Wζ = ∂ζ/∂t +
U ζ · ∇ζ at z = ζ and W−h + U−h · ∇h = 0 at z = −h can be applied. The vertical velocity
can be expressed with the horizontal velocity terms by integrating the continuity equation,
yielding,

Wo = −zS − T (126)

where S = ∇ ·U o and T = ∇ · (hU o).
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With the perturbation analysis, the horizontal vorticity is expressed as

∂U ′

∂z′
−∇W ′ = µ2 co

ho

(
∂U 1

∂z
−∇Wo

)
+

co

ho

O
(
µ4

)
= µ2 co

ho

ω1 +
co

ho

O
(
µ4

)
(127)

A vertical profile of U 1 can be derived from equation (11) through a vertical integration:

U 1 = −1

2
z2∇S − z∇T +

1

2
h2∇S − h∇T +

∫ z

−h

ω1dz + U 1(−h) + O
(
µ2

)
(128)

such that the horizontal velocity, including up to second-order terms, becomes

U = U o − µ2

(
1

2
z2∇S + z∇T − 1

2
h2∇S + h∇T

)
+ µ2

∫ z

−h

ω1dz

+ µ2U 1(−h) + O
(
µ4

)
(129)

As this derivation will make use of Nwogu’s (1993) approach, the horizontal velocity is
evaluated at an arbitrary elevation z = zα,

Uα = U o − µ2

(
1

2
zα

2∇S + zα∇T − 1

2
h2∇S + h∇T

)
+ µ2

∫ zα

−h

ω1dz

+ µ2U 1(−h) + O
(
µ4

)
(130)

Subtracting the equation (14) from the equation (13), U can be expressed in terms of Uα.

U = Uα + µ2

{
1

2

(
zα

2 − z2
)∇S + (zα − z)∇T

}
+ µ2Ω + O

(
µ4

)
(131)

where Ω =
∫ z

zα
ω1dz. For later use, the horizontal velocity can be expressed as U =

Uα + µ2
(
Uφ

1 + U r
1

)
+ O (µ4) in which U r

1 = Ω and Uφ
1 =

(
Uφ

1 , V φ
1

)
is defined as

Uφ
1 =

1

2

(
zα

2 − z2
)∇S + (zα − z)∇T (132)

The vertical profile of pressure is found through integration of the vertical momentum
equation. Noting that the vertical distribution of νv

t is independent on z as shown in the
equation (4), the pressure can be expressed as

p = ζ − z

+ µ2 1

2

(
z2 − ζ2

) ∂S

∂t
+ µ2 (z − ζ)

∂T

∂t

+ µ2 1

2

(
z2 − ζ2

)
U o · ∇S + µ2 (z − ζ) U o · ∇T

+ µ2 1

2

(
ζ2 − z2

)
S2 + µ2 (ζ − z) TS

+ O
(
µ4, αµ3, βµ3

)
(133)
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The next step in deriving the horizontal depth-integrated momentum equation is to express
each term of the horizontal momentum equations through Uα. These terms, included to
elucidate how vorticity and viscosity terms appear, become

∂U

∂t
=

∂Uα

∂t
+ µ2 ∂

∂t

{
1

2

(
zα

2 − z2
)∇S + (zα − z)∇T

}
+ µ2∂Ω

∂t
+ O

(
µ4

)
(134)

U · ∇U = Uα · ∇Uα + µ2∇
[
Uα ·

{
1

2

(
zα

2 − z2
)∇S + (zα − z)∇T

}]

+ µ2∇ (Uα ·Ω) + µ2ξ + O
(
µ4

)
(135)

W
∂U

∂z
= µ2

(
z2S∇S + zT∇S + zS∇T + T∇T + Woω1

)
+ O

(
µ4

)
(136)

∇p = ∇ζ

− µ2 1

2
∇

(
ζ2∂S

∂t

)
− µ2∇

(
ζ
∂T

∂t

)
+ µ2 1

2
∇

(
z2∂S

∂t

)
+ µ2∇

(
z
∂T

∂t

)

− µ2 1

2
∇ (

ζ2Uα · ∇S
)− µ2∇ (ζUα · ∇T ) + µ2∇

(
1

2
ζ2S2

)
+ µ2∇ (ζTS)

+ µ2 1

2
∇ (

z2Uα · ∇S
)

+ µ2∇ (zUα · ∇T )− µ2∇
(

1

2
z2S2

)
− µ2∇ (zTS)

+ O
(
µ4

)
(137)

αµ∇ · (νh
t ∇U ) = αµ∇ · (νh

t ∇Uα

)
+ O

(
αµ3

)
(138)

β

µ

∂

∂z

(
νv

t

∂U

∂z

)
= βµ

∂νv
t ω1

∂z
− βµνv

t∇S + O
(
βµ3

)
(139)

In the equation (19), ξ = (ξx, ξy) is defined as

ξx =


Vα





∂
(
Uφ

1 + Ωx
)

∂y
−

∂
(
V φ

1 + Ωy
)

∂x



−

(
V φ

1 + Ωy
) (

∂Vα

∂x
− ∂Uα

∂y

)
 (140)

ξy =


Uα





∂
(
V φ

1 + Ωy
)

∂x
−

∂
(
Uφ

1 + Ωx
)

∂y



 +

(
Uφ

1 + Ωx
) (

∂Vα

∂x
− ∂Uα

∂y

)
 (141)

where (Uα, Vα) = Uα and Ωx and Ωy are defined as Ω = (Ωx, Ωy).
The horizontal vorticity term appearing in equation (23), namely ∂νv

t ω1/∂z, can be ex-
pressed through a shear stress, τ , in the following way:

77



∂νv
t ω1

∂z
=

∂

∂z

{
νv

t

(
∂U r

1

∂z
+

∂Uφ
1

∂z
−∇Wo

)}
=

∂

∂z

(
νv

t

∂U r
1

∂z

)
=

∂τ

∂z
(142)

If the shear stress is assumed to vary linearly from zero at the water surface to τ b at the
bottom (Rodi, 1980), then the horizontal vorticity terms can be expressed as

ω1 =
∂U r

1

∂z
=

τ b

νv
t

ζ − z

ζ + h
(143)

Ω =

∫ z

zα

ω1dz =
τ b

νv
t (ζ + h)

{
1

2

(
z2

α − z2
)

+ ζ (z − zα)

}
(144)

Equation (28) shows that with horizontal vorticity correlated directly, and simply, to the
bottom stress, the depth-integrated result

By substituting the derived equations (18)-(28) into the equation (6), the depth-integrated
momentum equation becomes:

∂Uα

∂t
+ Uα · ∇Uα +∇ζ

− µ2 1

2
∇

(
ζ2∂S

∂t

)
− µ2∇

(
ζ
∂T

∂t

)
+ µ2

(
1

2
zα

2∂∇S

∂t
+ zα

∂∇T

∂t

)

− µ2 1

2
∇ (

ζ2Uα · ∇S
)− µ2∇ (ζUα · ∇T ) + µ2∇

(
1

2
ζ2S2

)
+ µ2∇ (ζTS)

+ µ2 1

2
∇ (

zα
2Uα · ∇S

)
+ µ2∇ (zαUα · ∇T ) + µ2 (T∇T )

+ µ2 ∂

∂t

[
ψ

{
1

2

(
z2

α − z2
)

+ ζ (z − zα)

}]

+ µ2∇
(

Uα ·
[
ψ

{
1

2

(
z2

α − z2
)

+ ζ (z − zα)

}])

− µ2 (zS + T ) (ζ − z) ψ + µ2ξ

− αµ∇ · (νh
t ∇Uα

)
+ βµνv

t∇S − βµ
∂τ

∂z
= O

(
µ4, αµ3, βµ3

)
(145)

where ψ = τ b/ {νv
t (ζ + h)}.

15.3 Elimination of z-dependent Terms

Several approaches have been used to eliminate the z-dependent terms in the Boussinesq
type momentum equations. In Hsiao et al.(2002) and in many publications, irrotational
flow assumptions were used to eliminate the terms. Chen et al. (2003) eliminated the z
dependency by setting z = zα in these terms. In this study, the approach proposed by
Chen (2006) is used; the equation (31) is depth-averaged. For example, the τ term can be
rewritten by
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1

ζ + h

∫ ζ

−h

∂τ

∂z
dz = − τ b

ζ + h
(146)

Finally, the depth-integrated momentum equations including viscosity and vorticity effects
can be expressed as

∂Uα

∂t
+ Uα · ∇Uα +∇ζ + µ2

(
D + Dν + ξ + ξν

)

− αµ∇ · (νh
t ∇Uα

)
+ βµνv

t∇S + βµ
τ b

ζ + h

= O
(
µ4, αµ3, βµ3

)
(147)

where

D =
1

2
∇ (

zα
2Uα · ∇S

)
+∇ (zαUα · ∇T ) + (T∇T )

− 1

2
∇

(
ζ2∂S

∂t

)
−∇

(
ζ
∂T

∂t

)
+

(
1

2
zα

2∂∇S

∂t
+ zα

∂∇T

∂t

)

− 1

2
∇ (

ζ2Uα · ∇S
)−∇ (ζUα · ∇T ) +∇

(
1

2
ζ2S2

)
+∇ (ζTS)

Dν =
(ζ − h)

2

∂ψζ

∂t
− (ζ2 − ζh + h2)

6

∂ψ

∂t
+

∂

∂t

{
ψ

(
z2

α

2
− ζzα

)}

+
(ζ − h)

2
∇{Uα · (ψζ)} − (ζ2 − ζh + h2)

6
∇ (Uα ·ψ)

+ ∇
[
Uα ·

{
ψ

(
z2

α

2
− ζzα

)}]

− ψ

{
(ζ2 + ζh− 2h2) S

6
+

(ζ + h) T

2

}

ξ =
(
ξx, ξy

)
, ξν =

(
ξνx , ξνy

)
,

ξx = −Vα

{
∂zα

∂x

(
zα

∂S

∂y
+

∂T

∂y

)
− ∂zα

∂y

(
zα

∂S

∂x
+

∂T

∂x

)}

−
(

∂Vα

∂x
− ∂Uα

∂y

)[{
z2

α

2
− (ζ2 − ζh + h2)

6

}
∂S

∂y
+

{
zα − (ζ − h)

2

}
∂T

∂y

]

ξy = Uα

{
∂zα

∂x

(
zα

∂S

∂y
+

∂T

∂y

)
− ∂zα

∂y

(
zα

∂S

∂x
+

∂T

∂x

)}

+

(
∂Vα

∂x
− ∂Uα

∂y

)[{
z2

α

2
− (ζ2 − ζh + h2)

6

}
∂S

∂x
+

{
zα − (ζ − h)

2

}
∂T

∂x

]
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ξνx = −Vα

[
∂

∂x

{
ψy

(
1

2
z2

α − zαζ

)}
− (ζ2 − ζh + h2)

6

∂ψy

∂x
+

(ζ − h)

2

∂ψyζ

∂x

− ∂

∂y

{
ψx

(
1

2
z2

α − zαζ

)}
+

(ζ2 − ζh + h2)

6

∂ψx

∂y
− (ζ − h)

2

∂ψxζ

∂y

]

−
(

∂Vα

∂x
− ∂Uα

∂y

)
ψy

{
z2

α

2
− zαζ +

(2ζ2 − 2ζh− h2)

6

}

ξνy = Uα

[
∂

∂x

{
ψy

(
1

2
z2

α − zαζ

)}
− (ζ2 − ζh + h2)

6

∂ψy

∂x
+

(ζ − h)

2

∂ψyζ

∂x

− ∂

∂y

{
ψx

(
1

2
z2

α − zαζ

)}
+

(ζ2 − ζh + h2)

6

∂ψx

∂y
− (ζ − h)

2

∂ψxζ

∂y

]

+

(
∂Vα

∂x
− ∂Uα

∂y

)
ψx

{
z2

α

2
− zαζ +

(2ζ2 − 2ζh− h2)

6

}

and (ψx, ψy) = ψ.
The continuity equation is obtained by integrating equation (5) with the kinematic bottom

and free surface boundary conditions, giving:

∂ζ

∂t
+∇ · {(ζ + h) Uα}+ µ2 (M + M ν) = O

(
µ4

)
(148)

where

M = −∇ ·
[
(ζ + h)

{(
(ζ2 − ζh + h2)

6
− z2

α

2

)
∇S +

(
(ζ − h)

2
− zα

)
∇T

}]

M ν = ∇ ·
[
ψ (ζ + h)

{
z2

α

2
− zαζ +

(2ζ2 − 2ζh− h2)

6

}]

15.4 Subgrid Scale Eddy Viscosity Model and Bottom Friction

It is expected that, in the horizontal plane, the depth-integrated model will be able to resolve
eddy scales larger than the grid size. For subgrid scale dissipation, the Smagorinsky model
is used for the horizontal eddy viscosity, and is given in non-dimensional form as

νh
t

′
= αµho

√
gho

[
2

(
∂Uα

∂x

)2

+ 2

(
∂Vα

∂y

)2

+ 2

(
∂Wo

∂z

)2

+

(
∂Vα

∂x
+

∂Uα

∂y

)2
]1/2

+ αho

√
ghoO

(
µ2

)
(149)

Comparing equation (33) with equation (2), it is evident that the initial calculation of the
scale for the horizontal eddy viscosity was incorrect. This scale is changed from αho

√
gho to

αµho

√
gho. The reason for this change is that, when writing equation (2), before the long
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wave scaling and perturbation, it is not yet known that ∂u
∂z

is small. The implication of this
change is that the order of the leading error of the equations (31) and (32) may be regarded
to be

O
(
µ4, αµ4, βµ3

)
(150)

and to provide a model with consistent error, α need not be considered small, or α = C2
s ∆2 =

O(1). Note that the lengthscale, ∆, has been scaled by the water depth. This implies that,
for typical values of Cs, the grid size should be less than approximately 5 times the local
water depth.

To approximate the bottom stress, a quadratic friction equation is used:

τx
b = Cfu

√
u2 + v2 , τ y

b = Cfv
√

u2 + v2 (151)

where the τx
b and τ y

b are the bottom stresses in the x and y directions respectively and u
and v are the depth averaged velocities in the x and y directions respectively. The roughness
coefficient Cf = f/4 (Chen and Jirka, 1995) and f is estimated using the Moody diagram,
which here is calculated by the explicit formula given by Haaland (1983).

15.5 Limiting Case: Non-Dispersive, Inviscid Model: µ2 ¿ 0; νh
t =

νv
t = τb = 0

Under these assumptions, the model reduces to the standard nonlinear shallow water wave
equations:

∂Uα

∂t
+ Uα · ∇Uα +∇ζ = O

(
µ2

)
(152)

∂ζ

∂t
+∇ · {(ζ + h) Uα} = O

(
µ2

)
(153)

15.6 Limiting Case: Weakly-Dispersive, Inviscid Model: µ4 ¿
0; νh

t = νv
t = τb = 0

Under these assumptions, the model reduces to the extended Boussinesq equations of Chen
(2006), prior to the ad-hod additions of dissipation sub-models:

∂Uα

∂t
+ Uα · ∇Uα +∇ζ + µ2

(
D + ξ

)
= O

(
µ4

)
(154)

∂ζ

∂t
+∇ · {(ζ + h) Uα}+ µ2M = O

(
µ4

)
(155)

It is important now to go back to the original scaling argument (see beginning of section
2.2). It was mentioned in this earlier discussion that there was no clear reason to choose either
µ2 or βµ as the perturbation expansion parameter. If one derives the inviscid model, given
above as equations (38) and (39), the expansion parameter is clearly µ2. It is then reasonable
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to extrapolate that, comparing the inviscid and viscous equations, the new dispersive terms
appearing in the viscous equations are in fact order βµ:

∂Uα

∂t
+ Uα · ∇Uα +∇ζ + µ2

(
D + ξ

)
+ βµ

(
Dν + ξν

)

− αµ∇ · (νh
t ∇Uα

)
+ βµνv

t∇S + βµ
τ b

ζ + h

= O
(
µ4, αµ3, βµ3, β2µ2

)
(156)

∂ζ

∂t
+∇ · {(ζ + h) Uα}+ µ2M + βµM ν = O

(
µ4, β2µ2

)
(157)

The above equations, (40) and (41), are the derived equations in their final form, and will be
used for the rest of this paper. Also note that following this argument, the vertical profile
of horizontal velocity is now

U = Uα + µ2Uφ
1 + βµU r

1 + O
(
µ4, β2µ2

)
(158)

add the viscous contribution to the profile is evident.

15.7 Limiting Case: Non-Dispersive, Weakly-Turbulent Model:
µ2 ¿ 0, α2/µ = O(1), β2/µ = O(1)

Under this set of assumptions, O(βµ) terms are retained as they will be greater than the
truncated O(µ2) dispersive terms:

∂Uα

∂t
+ Uα · ∇Uα +∇ζ + βµ

(
Dν + ξν

)

− αµ∇ · (νh
t ∇Uα

)
+ βµνv

t∇S + βµ
τ b

ζ + h

= O
(
µ2, αµ3, βµ3, β2µ2

)
(159)

∂ζ

∂t
+∇ · {(ζ + h) Uα}+ βµM ν = O

(
µ2, β2µ2

)
(160)

and the horizontal velocity is

U = Uα + βµU r
1 + O

(
µ2, β2µ2

)
(161)

Here, the equations indicate the interesting result that, in a physically consistent context,
one cannot simply append a bottom friction term onto the inviscid shallow water wave
equations in an attempt to capture dissipative effects. By including a bottom stress, a
number of associated terms, all of equal order to the added bottom stress, appear in both
the momentum and continuity equations. It is argued that, in any shallow flow where the
bottom stress plays a non-negligible role, the equation set given above as (43) and (44) is
the proper model to solve. This set includes both the vertical and horizontal vorticity that
is caused by the bottom stress.
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15.8 Limiting Case: Weakly-Dispersive, Weakly-Turbulent Model:
µ4 ¿ 0, α2/µ = O(1), β2/µ = O(1)

This is the model presented earlier, equations (40) and (41). This model includes the 2nd
order frequency dispersion correction for free surface waves as well the viscous and rotational
correction due to a bottom stress. While the eddy viscosity and horizontal vorticity models
are simplified, a model with known physical limitations has been derived that includes the
bottom friction term commonly added, in an ad-hoc manner, to the inviscid equations.
Finally, it is stated that one should take care when adding such ad-hoc models; it is clear
from this exercise that (1) it is not necessary to do so - the terms can be included through
a consistent derivation from the viscous primitive equations - and (2) one cannot properly
add the bottom friction term without also adding a number of additional terms in both the
continuity and momentum equations.

15.9 Conservative Form of Boussinesq Equations

In real nature such as coastal regions, lakes or rivers, the flow motions can easily become
complex. For example, because of changes in bathymetry, the flow can be changed from sub-
critical to supercritical and viceversa. By the way, it is well known that the primitive variable
scheme or non-conservative schemes will compute shock waves with the wrong strength and
thus the wrong speed of propagation (Toro, 2001).

Conservative schemes are known as a remedy, providing more accurate and stable results.
In order to make the momentum equations conservative, multiply the momentum equation
(40) by the total water depth and multiply the continiuty equation (41) by the horizontal
velocity (42). Assuming that the bottom does not vary in time (ht = 0), the two multiplied
equations are added, and after simple math, a set of conservative Boussinesq equations can
be obtained:

∂H

∂t
+

∂HUα

∂x
+

∂HVα

∂y
+ Dc = 0 (162)

∂HUα

∂t
+

∂HU2
α

∂x
+

∂HUαVα

∂y
+ gH

∂ζ

∂x
+ gHDx + UαDc = 0 (163)

∂HVα

∂t
+

∂HUαVα

∂x
+

∂HV 2
α

∂y
+ gH

∂ζ

∂y
+ gHDy + VαDc = 0 (164)

where H = ζ + h is a total water depth and the Dx and Dy are the 2nd order terms
(O(µ2, βµ, αµ)) of the depth integrated x and y horizontal momentum equations and the Dc

includes the 2nd order terms of the continuity equation.

15.10 Time Integration

A standard issue for the extended Boussinesq-type equations, which include 1st to 3rd order
spatial derivatives, the time integration should be fourth order accurate. This prevents
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numerical truncation errors of the same form as included derivatives. A third-order Adams-
Bashforth predictor and the fourth-order Adams-Moulton corrector scheme are used for the
time integration.

The predictor step is

ζn+1 = ζn +
∆t

12

(
23En − 16En−1 + 5En−2

)
(165)

P n+1 = P n +
∆t

12

(
23F n − 16F n−1 + 5F n−2

)
+ 2F n

1 − 3F n−1
1 + F n−2

1 + F p
v (166)

Qn+1 = Qn +
∆t

12

(
23Gn − 16Gn−1 + 5Gn−2

)
+ 2Gn

1 − 3Gn−1
1 + Gn−2

1 + Gp
v (167)

where P , Q, E, F and G are defined as

P = H

[
Uα +

1

2

(
z2

α − ζ2
)
Uαxx + (zα − ζ) (hUα)xx − ζx {ζUαx + (hUα)x}

]
(168)

Q = H

[
Vα +

1

2

(
z2

α − ζ2
)
Vαyy + (zα − ζ) (hVα)yy − ζy

{
ζVαy + (hVα)y

}]
(169)

E = ELO + ED + EV = 0 (170)

F = FLO + FD (171)

G = GLO + GD (172)

ELO, FLO, and GLO are rewritten by

ELO =
∂HUα

∂x
+

∂HVα

∂y
(173)

FLO =
∂

∂x

(
HU2

α +
1

2
gH2

)
+

∂HUαVα

∂y
− gH

∂h

∂x
(174)

GLO =
∂HUαVα

∂x
+

∂

∂y

(
HV 2

α +
1

2
gH2

)
− gH

∂h

∂y
(175)

and ED, EV , FD, GD, F1 and G1 are defined as

ED =

[
H

{(
1

6

(
ζ2 − ζh + h2

)− 1

2
z2

α

)
∇S +

(
1

2
(ζ − h)− zα

)
∇T

}]

x

+

[
H

{(
1

6

(
ζ2 − ζh + h2

)− 1

2
z2

α

)
∇S +

(
1

2
(ζ − h)− zα

)
∇T

}]

y

(176)
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EV = −
[
Hψx

{
ζ2

2
− zαζ +

(2ζ2 − 2ζh− h2)

6

}]

x

−
[
Hψy

{
ζ2

2
− zαζ +

(2ζ2 − 2ζh− h2)

6

}]

y

(177)

(FD, GD) = H

[
1

2
∇ (

ζ2Uα · ∇S
)

+∇ (ζUα · ∇T )− 1

2
∇ (

ζ2S2
)

− 1

2
∇ (

zα
2Uα · ∇S

)−∇ (zαUα · ∇T )− (T∇T )−∇ (ζTS)

− (ζ − h)

2
∇{Uα · (ψζ)}+

(ζ2 − ζh + h2)

6
∇ (Uα ·ψ)

− ∇
[
Uα ·

{
ψ

(
z2

α

2
− ζzα

)}]

+ ψ

{
(ζ2 + ζh− 2h2) S

6
+

HT

2

}
− ξ

+ ∇ · (νh
t ∇Uα

)− νv
t∇S − τ b

ρH

]
(178)

F1 =
H

2

(
ζ2 − z2

α

)
vxy −H (zα − ζ) (hv)xy + Hζx

{
ζvy + (hv)y

}
(179)

G1 =
H

2

(
ζ2 − z2

α

)
uxy −H (zα − ζ) (hu)xy + Hζy {ζux + (hu)x} (180)

F p
v and Gp

v are rewritten by

F p
v =

Hn (ζ2 − ζh + h2 + 3z2
α)

n

6

{
2 (ψx)n − 3 (ψx)n−1 + (ψx)n−2}

− Hn (ζ − h− 2zα)n

2

{
2 (ψxζ)n − 3 (ψxζ)n−1 + (ψxζ)n−2} (181)

Gp
v =

Hn (ζ2 − ζh + h2 + 3z2
α)

n

6

{
2 (ψy)n − 3 (ψy)n−1 + (ψy)n−2}

− Hn (ζ − h− 2zα)n

2

{
2 (ψyζ)n − 3 (ψyζ)n−1 + (ψyζ)n−2} (182)

The corrector step is

ζn+1 = ζn +
∆t

24

(
9En+1 + 19En − 5En−1 + En−2

)
(183)

Un+1 = Un +
∆t

24

(
9F n+1 + 19F n − 5F n−1 + F n−2

)
+ F n+1

1 − F n
1 + F c

v (184)
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V n+1 = V n +
∆t

24

(
9Gn+1 + 19Gn − 5Gn−1 + Gn−2

)
+ Gn+1

1 −Gn
1 + Gc

v (185)

where F c
v and Gc

v are rewritten as

F c
v =

Hn+1 (ζ2 − ζh + h2 + 3z2
α)

n+1

6

{
(ψx)n+1 − (ψx)n}

− Hn+1 (ζ − h− 2zα)n+1

2

{
(ψxζ)n+1 − (ψxζ)n}

(186)

Gc
v =

Hn+1 (ζ2 − ζh + h2 + 3z2
α)

n+1

6

{
(ψy)n+1 − (ψy)n}

− Hn+1 (ζ − h− 2zα)n+1

2

{
(ψyζ)n+1 − (ψyζ)n}

(187)

After each predictor and corrector step, P and Q are solved by a matrix solver. Note that
the governing equations are solved by cell averaged finite volume method, so all computed
values are cell averaged values. The P and Q can be expressed as

P =
H

∆x

[∫ xi+1/2

xi−1/2

Uα(x)dx +
1

2

(
z2

α − ζ2
) ∫ xi+1/2

xi−1/2

Uα(x)xxdx

+ (zα − ζ)

∫ xi+1/2

xi−1/2

{hUα(x)}xx dx

− ζxζ

∫ xi+1/2

xi−1/2

Uα(x)xdx− ζx

∫ xi+1/2

xi−1/2

{hUα(x)}x dx

]
(188)

Q =
H

∆y

[∫ yj+1/2

yj−1/2

Vα(y)dy +
1

2

(
z2

α − ζ2
) ∫ yj+1/2

yj−1/2

Vα(y)yydy

+ (zα − ζ)

∫ yj+1/2

yj−1/2

{hVα(y)}yy dy

− ζyζ

∫ yj+1/2

yj−1/2

Vα(y)ydy − ζy

∫ yj+1/2

yj−1/2

{hVα(y)}y dy

]
(189)

The equations (63) and (64) yield a diagonal matrix and can be solved efficiently. In this
study, a bandwidth of three matrix is used. For x direction,

αU i−1
α + βU i

α + γU i+1
α = P (190)

where

α = Hi

{
z2

α − ζ2

2∆x2
+

(zα − ζ) hi−1

∆x2
+

ζxζ

2∆x
+

ζxhi−1

2∆x

}
(191)
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β = Hi

{
1− z2

α − ζ2

∆x2
+

2 (zα − ζ) hi

∆x2

}
(192)

γ = Hi

{
z2

α − ζ2

2∆x2
+

(zα − ζ) hi+1

∆x2
− ζxζ

2∆x
− ζxhi+1

2∆x

}
(193)

For y direction, a straightforward procedure is used. The convergence error is defined as
ε =

∑ |fn+1 − fn+1
∗ |/ ∑ |fn+1| and it is required ε < 10−4 in order to be converged in the

verifications of this study.

15.11 4th-Order Accuracy Compact MUSCL TVD Scheme for
Leading Order Terms

For the analysis of FLO and GLO terms except the bottom slope terms gHhx and gHhy,
a fourth-order compact MUSCL TVD scheme (Yamamoto and Daiguji, 1993) is used to
construct the interface values as followings

φL
i+1/2 = φi +

1

6

{
∆∗φi−1/2 + 2∆∗φ̃i+1/2

}
(194)

φR
i+1/2 = φi+1 − 1

6

{
2∆∗φi+1/2 + 2∆∗φ̃i+3/2

}
(195)

where

∆∗φi−1/2 = minmod
(
∆∗φi−1/2, b∆

∗φi+1/2

)
(196)

∆∗φ̃i+1/2 = minmod
(
∆∗φi+1/2, b∆

∗φi−1/2

)
(197)

∆∗φi+1/2 = minmod
(
∆∗φi+1/2, b∆

∗φi+3/2

)
(198)

∆∗φ̃i+3/2 = minmod
(
∆∗φi+3/2, b∆

∗φi+1/2

)
(199)

∆∗φi+1/2 = ∆φi+1/2 − 1

6
∆3φi+1/2 (200)

∆3φi+1/2 = ∆φi−1/2 − 2∆φi+1/2 + ∆φi+3/2 (201)

∆φi−1/2 = minmod
(
∆φi−1/2, b1∆φi+1/2, b1∆φi+3/2

)
(202)

∆φi+1/2 = minmod
(
∆φi+1/2, b1∆φi+3/2, b1∆φi−1/2

)
(203)

∆φi+3/2 = minmod
(
∆φi+3/2, b1∆φi−1/2, b1∆φi+1/2

)
(204)
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minmod(i, j) = sign(i) max [0, min {|i|, b1sign(i)}] (205)

minmod(i, j, k) = sign(i) max [0, min {|i|, b1sign(i), b1sign(i)k}] (206)

in which the coefficients b1 = 2 and 1 < b ≤ 4 and more details of this numerical scheme
are described in Yamamoto and Daiguji (1993). By using the constructed interface values,
the numerical fluxes are computed by approximate Riemann solvers such as HLL or HLLC
(Toro, 1999).

However, this numerical scheme which combines the the Riemann solvers and MUSCL
scheme can occur unphysical oscillations when it is applied to solve the shallow water equa-
tions system on irregular bathymetry. One of the remedy is the Surface Gradient Method
(Zhou et al. 2001), which can get rid of the oscillations but the bathymetry should vary
continuously. Therefore, if there are discontinuous bottom area, modified versions of the
surface gradient method should be used (Zhou et al. 2002 and Kim et al. 2008). In this
study, a modified version by Kim et al. (2008) is used for the simplicity of the method. Orig-
inally, the modified version of the surface gradient method was developed and verified for
the combinations of HLL/HLLC and second-order MUSCL scheme. Although the results is
not printed in this paper, the authors verified that it still work for the fourth-order accuracy
MUSCL scheme.

15.12 Higher Order Accuracy Finite Volume Discretization for
Dispersive Terms

A cell averaged value φ̄i is defined as

φ̄i =
1

∆x

∫ xi+1/2

xi−1/2

φ(x)dx (207)

Substituting the cell averaged value into the Taylor series φ = φi+1/2+xφ′i+1/2+x2/2φ′′i+1/2+

x3/6φ′′′i+1/2 + x4/24φ′′′′i+1/2 + · · · then we can express the cell averaged value with the values

defined at cell interfaces (Lacor et al., 2004). For example,

φ̄i = φi+1/2 − ∆x

2
φ′i+1/2 +

∆x2

6
φ′′i+1/2 −

∆x3

24
φ′′′i+1/2 + · · · (208)

where subscript i means the index of a cell and i + 1/2 is the index of a cell interface. By
the combinations of the Taylor series expansions, the following discretization equations can
be derived and used for the discretization of the dispersion terms.

φi+1/2 =
7
(
φ̄i+1 + φ̄i

)− (
φ̄i+2 + φ̄i−1

)

12
+ O

(
∆x4

)
(209)

φ′i+1/2 =
15

(
φ̄i+1 − φ̄i

)− (
φ̄i+2 − φ̄i−1

)

12∆x
+ O

(
∆x4

)
(210)

φ′′i+1/2 =

(
φ̄i+2 + φ̄i−1

)− (
φ̄i+1 + φ̄i

)

2∆x2
+ O

(
∆x2

)
(211)
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