
1

February 2008

M.G. Gesteira (mggesteira@uvigo.es)
B.D. Rogers (benedict.rogers@manchester.ac.uk)

R.A. Dalrymple (rad@jhu.edu)
A.J.C. Crespo (alexbexe@uvigo.es)

M. Narayanaswamy (muthu@jhu.edu)

 2

Acknowledgements

The development and application of SPHysics were partially supported by:
- Xunta de Galicia under project PGIDIT06PXIB383285PR.
- Office of Naval Research, Geosciences Program
- EPSRC Project Grant GR/S28310

 3

Abstract

This report documents the computer program SPHysics based on
Smoothed Particle Hydrodynamics theory. The documentation
provides a brief description of the governing equations and the
different numerical schemes used to solve them. FORTRAN code is
provided for two and three- dimensional versions of the model. Post-
processing tools for MATLAB visualization are also provided.
Finally, several working examples are documented to enable to user to
test the program and verify that it is installed correctly.

 4

Contents

1. THEORETICAL BACKGROUND 6
1.1. The SPH method 6
1.2. The weighting function or smoothing kernel 6
1.3. Momentum equation 7

1.3.1. Artificial viscosity 7
1.3.2. Laminar viscosity 8
1.3.3. Laminar viscosity and SPS 8

1.4. Continuity equation 9
1.5. Equation of state 9
1.6. Moving the particles 10
1.7. Thermal energy 10
1.8 Density Reinitialization 10

2. IMPLEMENTATION 12
2.1. Time stepping 12

2.1.1. Predictor-Corrector scheme 12
2.1.2. Verlet scheme 12

2.2. Variable time step 13
2.3. Computational efficiency: link list 13
2.4. Boundary conditions 15

2.4.1. Dynamic Boundary conditions 15
2.4.2. Repulsive Force Boundary Conditions 16
2.4.3. Periodic Open Boundaries 18

2.5. Checking limits 19
2.5.1. Fixing the limits 19
2.5.2. Changing the limits in Z+ 19
2.5.3. Limits in X, Y or Z- directions 19

 2.6. Restart run 20
3. USER’S MANUAL 21

3.1. Installation 21
3.2. Program outline 21

3.2.1. SPHysicsgen 23
3.2.1.1. Creating compiling options 23
3.2.1.2. Input files 24
3.2.1.3. Output files 24

 5

3.2.1.4. Subroutines 30
3.2.2. SPHysics 31

3.2.2.1. Input files 31
3.2.2.2. Output files 32
3.2.2.3. Subroutines 34

4. TEST CASES 37
4.1. Running the model 37

4.1.1. Compiling and executing on Linux 37
4.1.2. Compiling and executing on Windows 39

4.2. Test case 1: 2D Dam break in a box 41
4.3. Test case 2: 2D Dam break evolution over a wet bottom in a
box.

45

4.4. Test case 3: Waves generated by a paddle in a beach 49
4.4.1. Case 2D 49
4.4.2. Case 3D 53

4.5. Test case 4: Tsunami generated by a sliding Wedge 56
4.5.1. Case 2D 56
4.5.2. Case 3D 60

4.6. Test case 5: 3D dam-break interaction with a structure 63
5. VISUALIZATION 68
6. REFERENCES 68
7. PUBLICATIONS USING SPHysics CODE 69

 6

1. THEORY

1.1. The SPH method

The main features of the SPH method, which is based on integral interpolants, are
described in detail in the following papers (Monaghan, 1982; Monaghan, 1992; Benz,
1990; Liu, 2003, Monaghan, 2005). Herein we will only refer to the representation of
the constitutive equations in SPH notation. In SPH, the fundamental principle is to
approximate any function)(rA r

 by

∫ −= '),'()'()(rdhrrWrArA rrrrr
 (1.1)

where h is called the smoothing length and),'(hrrW rr
− is the weighting function or

kernel. This approximation, in discrete notation, leads to the following approximation of
the function at a particle (interpolation point) a,

ab
b

b

b
b W

A
mrA

ρ∑=)(r
(1.2)

where the summation is over all the particles within the region of compact support of
the kernel function., The mass and density are denoted by mb and ρb respectively and

),(hrrWW baab
rr −= is the weight function or kernel.

1.2. The weighting function or smoothing kernel

The performance of an SPH model is critically dependent on the choice of the
weighting functions. They should satisfy several conditions such as positivity, compact
support, and normalization. Also, Wab must be monotonically decreasing with
increasing distance from particle a and behave like a delta function as the smoothing
length, h, tends to zero (Monaghan, 1992; Benz, 1990; Liu, 2003). Kernels depend on
the smoothing length, h, and the non-dimensional distance between particles given by q
= r / h, r being the distance between particles a and b. The parameter h, often called
influence domain or smoothing domain, controls the size of the area around particle a
where contribution from the rest of the particles cannot be neglected.

In SPHysics, the user can choose from one of the following four different kernel
definitions:

1) Gaussian:

()2exp),W(qhr D −= α (1.3)

where αD is)(1 2hπ in 2D and)(1 32/3 hπ in 3D

 7

2) Quadratic:

() 20
4
3

4
3

16
3,W 2 ≤≤⎥⎦

⎤
⎢⎣
⎡ +−= qqqhr Dα (1.4)

where αD is)(2 2hπ in 2D and)4(5 3hπ in 3D

3) Cubic spline:

() ()

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≥

≤≤−

≤≤+−

=

20

212
4
1

10
4
3

2
31

,W 3

32

D

q

qq

qqq

hr α (1.5)

where αD is 10/(7πh2) in 2D and 1/(πh3) in 3D.

4) Quintic (Wendland, 1995):

 () () 2012
2

1,W
4

≤≤+⎟
⎠
⎞

⎜
⎝
⎛ −= qqqhr Dα (1.6)

where αD is 7/(4πh2) in 2D and 7/(8πh3) in 3D.

The tensile correction (Monaghan, 2000) is automatically activated when using kernels
with first derivatives that go to zero with decreasing inter-particle spacing.

1.3. Momentum equation

The momentum conservation equation in a continuum field is

Θ++∇−=
rrrr

gP
Dt

vD
ρ
1

(1.7)

where Θ
r

 refers to the diffusion terms.
Different approaches, based on various existing formulations of the diffusive terms, can
be considered in the SPH method to describe the momentum equation. Three different
options for diffusion can be used in SPHysics: (i) artificial viscosity, (ii) laminar
viscosity and (iii) full viscosity (laminar viscosity+ Sub-Particle Scale (SPS)
Turbulence):

1.3.1. Artificial viscosity

The artificial viscosity proposed by Monaghan (1992) has been used very often due to
its simplicity. In SPH notation, Eq. 1.7 can be written as

gWPPm
dt
vd

aba
b

ab
a

a

b

b
b

a rrr
+∇⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Π++−= ∑ 22 ρρ

(1.8)

where gr = (0, 0, -9.81) ms-2 is the gravitational acceleration.

 8

The pressure gradient term in symmetrical form is expressed in SPH notation as

aba
b

2
a

a
2
b

b
b W

ρ
P

ρ
PmP

ρ
1

∇⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∇− ∑

rr

a

(1.9)

with Pk and ρk are the pressure and density corresponding to particle k (evaluated at a or
b).
Πab is the viscosity term:

⎪⎩

⎪
⎨
⎧

>

<
−

=Π
00

0
ρ

µcα

ab

abab

abab

abab
ab

rv

rv
rr

rr

(1.10)

with 22 η
µ

+
=

ab

abab
ab r

rvh
r

rr

; where brrr aab
rrr

−= , baab vvv rrr
−= ; being kr

r
 and kvr the position and

the velocity corresponding to particle k (a or b); 2
cc

c ba
ab

+
= . η2= 0.01h2, α is a free

parameter that can be changed according to each problem.

1.3.2. Laminar viscosity

The momentum conservation equation with laminar viscous stresses is given by

vgP
Dt

vD
O

rrrr
21

∇++∇−= υ
ρ

(1.11)

where the laminar stress term simplifies(Morris et al., 1997) to:

() aba2
abba

abab0

b
b

2
0 W

r)ρ(ρ
vr4υmvυ ∇

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
=∇ ∑

r
r

rr
r

a
(1.12)

where 0υ is the kinetic viscosity of laminar flow (sm /10 26−).
So, in SPH notation, Eq. 1.11 can be written as:

aba2
abba

abab0

b
baba

b
2
a

a
2
b

b
b

a W
r)ρ(ρ

vr4υmW
ρ
P

ρ
Pm

dt
d

∇
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
++∇⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−= ∑∑

r
r

rr
rrr
gv

(1.13)

1.3.3. Laminar viscosity and Sub-Particle Scale (SPS) Turbulence

The Sub-Particle Scale (SPS) approach to modeling turbulence was first described by
Gotoh et al. (2001) to represent the effects of turbulence in their MPS model. The
momentum conservation equation is,

τ∇+∇++∇−=
rrrrr

ρ
vυgP

ρDt
vD 11 2

0
(1.14)

where the laminar term can be treated following Eq. 1.12 and τ represents the SPS
stress tensor.

 9

The eddy viscosity assumption (Boussinesq’s hypothesis) is often used to model the
SPS stress tensor using Favre-averaging (for a compressible fluid):

22

3
2

ijijIijijt
ij SδCkδ

3
2S2v

ρ
∆−−=

τ
, where ijτr is the sub-particle stress tensor,

[] S∆l)(Cv st
2min= the turbulence eddy viscosity, k the SPS turbulence kinetic energy,

Cs the Smagorinsky constant (0.12), CI = 0.0066, ∆ l the particle-particle spacing and
2

1
2)SS(S ijij= , ijS the element of SPS strain tensor.

So, following (Dalrymple & Rogers, 2006), Eq. 1.14 can be written in SPH notation as

aba
b

2
a

a
2
b

b
b

aba2
abba

abab0

b
b

aba
b

2
a

a
2
b

b
b

a

W
ρρ

m

W
r)ρ(ρ

vr4υm

W
ρ
P

ρ
Pm

dt
d

∇⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

+∇
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
+

+∇⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

∑

∑

∑

r

r
r

rr

rrr

ττ

gv

 (1.15)

1.4. Continuity equation

Changes in the fluid density are calculated in SPHysics using

aba
b

abb
a Wvm

dt
d

∇= ∑
rrρ

(1.16)

instead of using a weighted summation of mass terms (Monaghan, 1992), since it is
known to result in an artificial density decrease near fluid interfaces.

1.5. Equation of state

The fluid in the SPH formalism is treated as weakly compressible. This facilitates the
use of an equation of state to determine fluid pressure, which is much faster than
solving an equation such as the Poisson´s equation. However, the compressibility is
adjusted to slow the speed of sound so that the time step in the model (using a Courant
condition based the speed of sound) is reasonable. Another limitation on the
compressibility is imposed by the fact that the sound speed should be about ten times
faster than the maximum fluid velocity, thereby keeping density variations to within less
than 1%.
Following (Monaghan et al., 1999; Batchelor, 1974), the relationship between pressure
and density is assumed to follow the expression

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= 1

ρ
ρBP

γ

0

(1.17)

 10

where γ = 7 and, γρ0
2
0cB = being ρ0 = 1000 kg m-3 the reference density and

() ()
o

Pcc oo ρ
ρρ ∂∂== / the speed of sound at the reference density.

1.6. Moving the particles

Particles are moved using the XSPH variant (Monaghan, 1989)

ab
b ab

a
a W

ρ
m

ε
dt
d b

bavv
r rr
r

∑+=
(1.18)

where ε=0.5 and 2)(baab ρρρ += . This method moves a particle with a velocity that is
close to the average velocity in its neighborhood.

1.7. Thermal energy

The thermal energy associated to each particle is calculated using the expression given
by Monaghan (1994)

abaabab
b

b

a

a

b
b

a Wv
PP

m
dt

de
∇⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Ψ++= ∑

rr
222

1
ρρ

(1.19)

where abΨ refers to viscosity terms, which can be calculated using the different
approaches mentioned above.

1.8 Density Reinitialization

While the dynamics from SPH simulations are generally realistic, the pressure field of
the particles exhibits large pressure oscillations. Efforts to overcome this problem have
concentrated on several approaches including correcting the kernel (for an overview see
Bonet & Lok, 1999) and developing an incompressible solver. One of the most straight
forward and computationally least expensive is to perform a filter over the density of
the particles and the re-assign a density to each particle (Colagrossi and Landrini, 2003).
There are two orders of correction, zeroth order and first order.

Zeroth Order – Shepard Filter
The Shepard filter is a quick and simple correction to the density field, and the
following procedure is applied every 30 time steps

∑∑ ==
b

abb
b b

b
abb

new
a WmmW ~~

ρ
ρρ (1.20)

 11

where the kernel has been corrected using a zeroth-order correction:

∑
=

b b

b
ab

ab
ab mW

WW

ρ
~

~
(1.21)

First Order – Moving Least Squares (MLS)
The Moving Least Squares (MLS) approach was developed by Dilts (1999) and applied
successfully by Colagrossi and Landrini (2003) and by Panizzo (2004). This is a first-
order correction so that the linear variation of the density field can be exactly
reproduced:

∑∑ ==
b

MLS
abb

b b

bMLS
abb

new
a WmmW

ρ
ρρ (1.22)

The corrected kernel is evaluated as follows:

() () () abbaaa
MLS

b
MLS

ab WrrrrWW rrrr −⋅== β (1.23)
so that in 2-D

() ()() ()()[] abbaazbaaxa
MLS

ab WzzrxxrrW −+−+= rrr
110 βββ (1.24)

where the correction vector β is given by

()
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= −

0
0
1

1

1

1

0

A

z

xar
β
β
β

β r , where () b
b

ab VrW AA ~ ∑= r (1.25)

with the matrix A~ being given by
() ()

() () ()()
() ()() () ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−−
−−−−

−−
=

2

2

1
~

babababa

babababa

baba

zzzzxxzz
xxzzxxxx

zzxx
A (1.26)

Similar to the Shepard filter this is applied every 30 time steps or similar. The
equations are similar in 3-D but just include the y-direction.

 12

2. IMPLEMENTATION

2.1. Time stepping

Two numerical schemes are implemented in SPHysics: (i) the Predictor-Corrector
algorithm described by Monaghan (1989); (ii) the Verlet algorithm (Verlet, 1967).
Consider the momentum (1.7), density (1.16), position (1.18) and density of energy
(1.19) equations in the following form

aF
v rr

=
dt

d a
(2.1a)

aD=
dt

d aρ
(2.1b)

aV
r rr
=

dt
d a

(2.1c)

aE
e

=
dt

d a
(2.1d)

where aV
r

 represents the velocity contribution from particle a and from neighboring
particles (XSPH correction).

2.1.1. Predictor-Corrector scheme

 This scheme predicts the evolution in time as,

n
a

n
a

n
a Ftvv

rrr

2
2/1 ∆

+=+ ; n
a

n
a

n
a Dt

2
2/1 ∆

+=+ ρρ

n
a

n
a

n
a Vtrr

rrr

2
2/1 ∆

+=+ ; n
a

n
a

n
a Etee

2
2/1 ∆

+=+

(2.2)

calculating)(2/12/1 ++ = n
a

n
a fP ρ according to Eq. 1.17.

These values are then corrected using forces at the half step
2/12/1

2
++ ∆

+= n
a

n
a

n
a Ftvv

rrr
; 2/12/1

2
++ ∆

+= n
a

n
a

n
a Dtρρ

2/12/1

2
++ ∆

+= n
a

n
a

n
a Vtrr

rrr ; 2/12/1

2
++ ∆

+= n
a

n
a

n
a Etee

(2.3)

Finally, the values are calculated at the end of the time step following:
n
a

n
a

n
a vvv rrr −= ++ 2/11 2 ;

n
a

n
a

n
a ρρρ −= ++ 2/11 2

n
a

n
a

n
a rrr rrr −= ++ 2/11 2 ;

n
a

n
a

n
a eee −= ++ 2/11 2

(2.4)

Finally, the pressure is calculated from density using)(11 ++ = n
a

n
a fP ρ .

2.1.2. Verlet scheme
This time stepping algorithm, to discretize Equations 3.1a-d, is split into two parts:
In general, variables are calculated according to

 13

n
a

n
a

n
a Ftvv

rrr Δ+= −+ 211
;

n
a

n
a

n
a tDΔ+= −+ 211 ρρ
n

a
n

a
n

a
n

a FtVtrr
rrrr 21 5.0 Δ+Δ+=+

;
n
a

n
a

n
a tEee Δ+= −+ 211

(2.5)

Once every M time steps (M on the order of 50 time steps), variables are calculated
according to

n
a

n
a

n
a Ftvv

rrr Δ+=+1
;

n
a

n
a

n
a tDΔ+=+ ρρ 1

n

a
n

a
n

a
n

a FtVtrr
rrrr 21 5.0 Δ+Δ+=+

;
n
a

n
a

n
a tEee Δ+=+1

(2.6)

This is to stop the time integration diverging since the equations are no longer coupled.

2.2. Variable time step

Time-step control is dependant on the CFL condition, the forcing terms and the viscous
diffusion term (Monaghan; 1989). A variable time step tδ is calculated according to
Monaghan and Kos (1999):

)t,t(.t cvf ΔΔ⋅=Δ min30 ; ()
a

af fht min=Δ ;
2max

min

ab

abab

bs

acv

r
rvhc

ht

r

rr
+

=Δ
 (2.7)

Here ftΔ is based on the force per unit mass |fa|, and cvtΔ combines the Courant and the
viscous time-step controls.

2.3 Computational efficiency: link list.

In the code the computational domain is divided in square cells of side 2h (see Figure
2.1). following Monaghan and Latanzio (1985). Thus, for a particle located inside a cell,
only the interactions with the particles of neighboring cells need to be considered. In
this way the number of calculations per time step and, therefore, the computational time
diminish considerably, from N2 operations to N logN, N being the number of particles.

Figure 2.1: Set of neighboring particles in 2D. The possible neighbors of a fluid particle
are in the adjacent cells but this only interacts with particles marked by black dots.

 14

The SPHysics code in 2D sweeps through the grid along the x-direction, for each z-
level. Around each cell, the E, N, NW & NE neighbouring cells are checked to
minimise repeating the particle interactions. Thus, for example, when the centre cell is
i=5 and k=3 (see scheme in Figure 2.2), the target cells are (5,4), (4,4), (6,4) and (6,3).
The rest of the cells were previously considered through the sweeping (e.g. the
interaction between cell (5,3) and (5,2) was previously accounted when (5,2) was
considered to be the centre cell).

ncx cells

N NE NW

E ik
ncz cells

Figure 2.2: Sweeping through grid cells in 2D. Starting from the lower left corner,
particles inside the center cell ik interact with adjacent cells only in E, N, NW and NE
directions. The interactions with the rest of the cells W, S, SW & SE directions were
previously computed using reverse interactions.

A similar protocol is used in 3D calculations (Figure 2.3).

Layer n

Layer n+1

Z

X

Y

Figure 2.3: Sweeping through grid cells in 3D. Only 13 out of 26 possible neighboring
cells are considered when centered on a particular ijk cell. The rest were previously

 15

considered when centered on adjacent cells using reverse interactions.

Two link lists are considered in SPHysics. The first one tracks the boundary particles
and it is partially upgraded every time step. This is due to the fact that the only
boundary particles that change their position in time are the ones that describe moving
objects such as gates and wavemakers. The second link list corresponds to fluid
particles and is completely updated every time step.

2.4. Boundary conditions

Three boundary conditions have been implemented in SPHysics: (i) Dynamic Boundary
conditions (Crespo et al, 2007; Dalrymple and Knio, 2000); (ii) Repulsive boundary
conditions (Monaghan & Kos, 1999) and (iii) Periodic open boundary conditions:

2.4.1. Dynamic Boundary conditions

In this method, boundary particles are forced to satisfy the same equations as fluid
particles. Thus, they follow the momentum equation (Eq. 1.7), the continuity equation
(Eq. 1.16), the equation of state (Eq. 1.17), and the energy equation (Eq. 1.19).
However, they do not move according to Eq. 1.18. They remain fixed in position (fixed
boundaries) or move according to some externally imposed function (moving objects
like gates, wavemakers …).
Boundary particles are organized in a staggered manner (see Fig. 2.4):

Figure 2.4: 2D sketch of the interaction between a fluid particle (empty circle) and a set
of boundary particles (full circles). The boundary particles are placed in a staggered
manner.

When a fluid particle approaches a boundary the density of the boundary particles
increases according to Eq. 1.16 resulting in a pressure increase following Eq. 1.17.
Thus, the force exerted on the fluid particle increases due to the pressure term ()2ρP
in momentum equation (see Eq. 1.8, 1.13 or 1.15). This mechanism is depicted in a
simple example where a fluid particle approaches the bottom of the tank. When the
distance between the boundary particle and the fluid particle becomes smaller than 2h,
the density, pressure and force exerted on the incoming particle increase generating the

 16

repulsion mechanism (see Fig. 2.5). The normalized pressure
term, () ()Rzz PPNPT 22 / ρρ= , is represented in Fig. 5c, where z refers to the distance
from the incoming fluid particle to the wall and R the minimum distance to the wall
attained by the incoming particle. The wall is composed of boundary particles.

0.8 1 1.2 1.4 1.6 1.8 2
1000

1100

1200

1300

Position/h

De
ns

ity
 (k

g/
m

3)

0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4
x 104

Position/h

Pr
es

su
re

 (N
/m

2)

0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

Position/h

NP
T z

Figure 2.5: Variation of density (a), pressure (b) and normalized pressure term (c) for a
moving particle approaching a solid boundary. Calculations were run without viscosity.

2.4.2. Repulsive boundary conditions.

This boundary condition was developed by Monaghan (1994) to ensure that a water
particle can never cross a solid boundary. In this case, analogous to inter-molecular
forces, the particles that constitute the boundary exert central forces on the fluid
particles. Thus, for a boundary particle and a fluid particle separated a distance r the
force for unit of mass has the form given by the Lennard-Jones potential. In a similar
way, other authors (Peskin, 1977) express this force assuming the existence of forces in
the boundaries, which can be described by a delta function. This method was refined in
Monaghan and Kos (1999) by means of an interpolation process, minimizing the inter-
spacing effect of the boundary particles on the repulsion force of the wall.
Following this approach, the force experienced by a water particle, f

r
, acting normal to

the wall, is given by
()⊥= uzPRnf ,)()(εξψrr

 (2.8)

 17

where nr is the normal of the solid wall. The distance ψ is the perpendicular distance of
the particle from the wall, while ξ is the projection of interpolation location ξ i onto the

chord joining the two adjacent boundary particles and ⊥u is the velocity of the water
particle projected onto the normal.. The repulsion function, R(ψ), is evaluated in terms

of the normalized distance from the wall, hq 2ψ= , as

()q
q

AR −= 11)(ψ (2.9)

where the coefficient A is
201.01
ic

h
A = (2.10)

ci being the speed of sound corresponding to particle i.
The function P(ξ) is chosen so that a water particle experiences a constant repulsive
force as it travels parallel to the wall

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛
∆

+=
b

P πξξ 2cos1
2
1

 (2.11)

where ∆b is the distance between any two adjacent boundary particles. Finally, the

function ()⊥uz,ε is a modification to Monaghan and Kos’s original suggestion and
adjusts the magnitude of the force according to the local water depth and velocity of the
water particle normal to the boundary

() () ()⊥⊥ += uzuz εεε , (2.12)

where

()
1

0
0

1

02.0
02.0

>
−≥>

≥

⎪
⎩

⎪
⎨

⎧
+=

o

oo

hz
hz

z
hzzε (2.13)

and

()
⎪
⎩

⎪
⎨

⎧

>
<
>

=

⊥

⊥

⊥

⊥⊥

o

oo

cu
cu

u
cuu

20
20

0

1
20

0
ε (2.14)

In Equations 2.12-2.14, z is the elevation above the local still-water level ho,
() nvvu BPWP

rrr ⋅−=⊥ , where the subscripts WP and BP refer to water and boundary

particles respectively, and oo Bc ργ= the speed of sound at the reference density.
The system of normals requires each boundary particle (BP) to know the coordinates of
its adjacent BPs. In a two-dimensional situation as shown in Figure 2.6a, the boundary
particle i is surrounded by BPs i-1 and i+1 so that the tangential vector is given by

() 1111 / −+−+ −−= iiii rrrrt rrrrr
 so that the normal is then found from 0=tnrr . The three-

dimensional situation is shown in Figure 2.6b where BP i also has adjacent neighbors j-
1 and j+1. The coordinates of these adjacent BPs are required to calculate the tangents

and normal: () 1111 / −+−+ −−= iiii rrrrt rrrrr
, () 1111 / −+−+ −−= jjjj rrrrs rrrrr

 and stn rrr ×= .

 18

i
i+1

i−1

 i−1

 i+1
 j−1

 j+1

 i

Figure 2.6: Location of adjacent boundary particles. (a) 2-D boundary particles and
adjacent neighbors; (b) 3-D boundary particles and adjacent neighbors

2.4.3 Periodic Open Boundary Conditions

In the present release version of the code, open boundaries are implemented using
periodic boundary conditions. Essentially this means that particles near an open lateral
boundary interact with the particles near the complementary open lateral boundary on
the other side of the domain. This situation is shown in Figure 2.7 where water particle
i lies near the top boundary and therefore its area of influence (or kernel support)
extends beyond the lateral boundary. With periodic boundaries, this area of influence is
continued through the bottom boundary so that particles interact near the bottom
boundary within the extended support interact with particle i.

Missing kernel support
for fluid particle i

Periodic kernel support
for fluid particle i

 i

Periodic lateral
boundary

Periodic lateral
boundary

 19

Figure 2.7: Periodic lateral boundaries: area of influence (kernel support) for particle i
extend beyond top lateral boundary and is continued through periodic bottom boundary.

2.5. Checking limits

In SPH, fluid particles can leave the computational domain in different ways, both
physically and non-physically. Once the particle is outside the domain, it is
continuously accelerated under the effect of gravity. These particles must be identified
and removed from the run to avoid spurious effects. The treatment of these particles
depends on the way they leave the computational domain.

2.5.1. Fixing the limits

Limits of the computational domain are fixed at the beginning of the run depending on

the initial position of the particles. In each direction: htikk +=Λ=Λ))0,(max(max

and htikk −=Λ=Λ))0,(min(min
, where Λk refers to the direction (X, Y or Z) and

],1[Ni∈ refers to all particles. These limits fix the number of cells of dimensions
2h×2h×2h (in 3D) used to cover the computational domain.
Limits in X, Y and Z- directions remain unchanged during the run. The limit in Z+ is
allowed to vary in time, since fluid can splash and surpass the upper limit of the
container. All limits are checked at every time step.

2.5.2. Changing the limits in Z+

When a fluid particle surpasses the upper limit in the vertical Z direction, the
computational domain is extended and new cells are created (see Fig. 2.8). The number
of boundary particles inside these new cells is immediately set to zero. Fluid particles
can then occupy these cells depending on their position. The number of cells in the
vertical is thus dynamically modified depending on the position of the highest fluid
particle. Furthermore, the number of boxes decreases when the particles fall down (last
frame of Fig. 2.8). This generates important savings in execution time, since no
redundant cell computations are performed.

Figure 2.8: Evolution of new cells in Z direction depending on the fluid particles
movement.

 20

When a part of a moving object surpasses the initial upper limit that part of the object it
is stopped at that upper limit for the rest of the run.

2.5.3. Limits in X, Y or Z- directions

A fluid particle can surpass the initial limits in X, Y or Z- direction due to several
reasons. Dynamic boundary particles are not completely impermeable. Hence a single
particle, accelerated by collision in the proximity of a boundary, can possibly penetrate
the boundary. On the other hand, the fluid can collide with the container overtopping
the lateral walls. Once the fluid leaves the container, fluid particles are continuously
accelerated by gravity away from the domain of interest, giving rise to very small time
steps according to Eq. 3.7 slowing down the calculations.

The position of particles is checked every time step, in such a way that when a particle
is found outside the container, the particle is replaced at a previously defined position
outside the container and marked with a flag. Thus, although the particle is not
eliminated from the list (the number of particles, N, remains constant) the particle is not
allowed to move with time.

2.6. Restarting a previous run

Restarting a previous run is one of the tools of SPHysics. The option is especially useful
after a power cut or when the estimated running time was underestimated and an
additional computational time should be considered. SPHysics starts from last recorded
file (PART file) by loading a file called RESTART.

 21

3. USER’S MANUAL

3.1. Installation
Two versions of SPHysics are available in this release:

- SPHysics_2D. The computational domain is considered to be 2D, where x
corresponds to the horizontal direction and z to the vertical direction.

- SPHysics_3D. The computational domain is fully 3D. x and y are the horizontal
directions and z the vertical direction.

SPHysics is distributed in a compressed file (gz or zip). The directory tree shown in
Figure 3.1 can be observed after uncompressing the package
In that figure, the following directories can be observed both in 2D and in 3D.

source contains the FORTRAN codes. This directory contains two subdirectories:
SPHysicsgen: contains the FORTRAN codes to create the initial conditions of
the run.
SPHysics: contains the FORTRAN source codes of SPH.

execs contains all executable codes.
run_directory is the directory created to run the model. The different subdirectories
Case1, …, CaseN placed in this directory correspond to the different working cases
to be created by the user. Input and output files are written in these directories
Post-Processing this directory contains MATLAB codes to visualize results.

3.2. Program Outline

Both the 2D and 3D version consist in two programs, which are run separately and in
the following order.
2D Code:

SPHysicsgen_2D: Creates the initial conditions and files for a given case.
SPHysics_2D: Runs the selected case with the initial conditions created by
SPHysicsgen_2D code.

3D Code:
SPHysicsgen_3D: Creates the initial conditions and files for a given case.
SPHysics_3D: Runs the selected case with the initial conditions created by
SPHysicsgen_3D code.

In general, 2D or 3D appended to the source file name means that the source is suited
for 2D or 3D calculations.

In the remainder of this document, SPHysicsgen and SPHysics, when used, refer to both
the aforementioned 2D and 3D programs for convenience. For example, SPHysicsgen
will refer to both SPHysicsgen_2D and SPHysicsgen_3D.

 22

Figure 3.1. Directory tree.

SPHysics

SPHysics_2D SPHysics_3D

execs Run_directory Post-Processing source

SPHysicsgen2D SPHysics2D Case1 … CaseN

execs Run_directory Post-Processing source

SPHysicsgen3D SPHysics3D Case1 … CaseN

23

3.2.1. SPHYSICSGEN
All subroutines are included in two source files (SPHysicsgen_2D.f or
SPHysicsgen_3D.f), depending on the nature two or three- dimensional of the
calculation. Each source uses a different common file, where most of the variables are
stored. The common files are common.gen2D (in 2D) and common.gen3D (in 3D).
Both versions (2D and 3D) can be compiled by the user with any FORTRAN compiler
and the resulting executable file is placed in subdirectory \execs.

SPHysicsgen plays a dual role: (i) Creating the MAKEFILE to compile SPHysics; and
(ii) Creating the output files that will be the input files to be read by SPHysics. These
files contain information about the geometry of the domain, the distribution of particles
and the different running options.

In Windows for example, SPHysicsgen.exe can be executed using one of the following
two commands,
 1. SPHysicsgen.exe <input_file >output_file
input_file is the general name (any name can be used) of the file containing the running
options. Different examples of input_file will be shown in next section.
output_file is the general name (any name can be used) of the file containing general
information about the run. This file is never read by the rest of the code and only serves
to provide information to the user.

 2. SPHysicsgen.exe
In this case, data about the run must then be provided by the user by means of the
keyboard and the information about the run appears on the screen. This option can be
used by beginners to get familiarized with the different options.

3.2.1.1. Creating compiling options
The compilation of SPHysics code depends on the nature of the problem under
consideration and on the particular features of the run. Thus, the user can chose the
options that are better suited to any particular problem and only those options will be
included in the executable versions of SPHysics. This protocol speeds up calculations
since the model is not forced to make time consuming logical decisions.

Both in 2D and 3D the following compiling options can be considered:

i) Kind of kernel: (1=Gaussian; 2= Quadratic; 3= Cubic Spline; 5= Quintic).
ii) Time stepping: (1= Predictor- Corrector algorithm; 2= Verlet algorithm).
iii) Density filter: (0= no filter; 1=Shepard; 2=MLS).
iv) Viscosity treatment: (1= Artificial viscosity; 2= Laminar viscosity;

3=Laminar viscosity +SPS).
v) Equation of state: (1=Weakly Compressible Fluid (Tait equation); 2=Ideal

Gas Equation; 3=Incompressible Fluid (Poisson equation).

24

vi) Boundary conditions: (1= Repulsive BC; 2= Dynamic BC).
vii) Choice of compilers: (1=gfortran; 2=ifort; 3=CVF). Please refer to section

4.1.1 for details on running the code on Windows using Compaq Visual
Fortran, and section 4.1.2 to use gfortran and ifort compilers. The gfortran
and ifort compilers have only been tested on Linux and Mac OSX platforms.

3.2.1.2. Input files
Different examples of input files will be shown in next section, where several test cases
will be described.

3.2.1.3. Output files
As we mentioned above, different output files are created by SPHysicsgen. These files
can be used either by the SPHysics executable as input files or by MATLAB codes to
visualize results (different MATLAB codes are provided in /Post-processing
subdirectory.

SPHysics.mak
Compiling file created by the executable SPHysicsgen. It depends on the running
options defined by input_file. It was prepared for COMPAQ VISUAL FORTRAN,
IFORT and GFORTRAN although it can be adapted to other compilers.

INDAT
Created by SPHysicsgen
Read by SPHysics code at GETDATA (see subsection 3.2.2.3).
UNIT=11
The file contains the following variables:
i_kernel vlx
i_algorithm vly
i_densityFilter vlz
i_viscos dx
iBC dy
i_periodicOBs(1) dz
i_periodicOBs(2) h
i_periodicOBs(3) np
lattice nb
i_EoS nbf
h_SWL ivar_dt
B dt
gamma tmax
coef out
eps trec_ini
rho0 dtrec_det
viscos_val t_sta_det
visc_wall t_end_det
 i_restartRun

25

Description:
i_kernel: Kind of kernel (1=Gaussian; 2= Quadratic; 3= Cubic Spline; 5= Quintic).
i_algorithm: Kind of algorithm (1= Predictor- Corrector algorithm; 2= Verlet

algorithm).
i_densityFilter: Use of a Shepard filter (1=Yes).
i_viscos: Viscosity definition 1= Artificial; 2= Laminar; 3= Laminar + SPS
IBC: Boundary conditions. 1=Monaghan repulsive forces; 2= Dynamic boundaries.
i_periodicOBs(1): Periodic Lateral boundaries in x direction? (1=yes)
i_periodicOBs(2): Periodic Lateral boundaries in y direction? (1=yes)
i_periodicOBs(3): Periodic Lateral boundaries in z direction? (1=yes)
lattice: Lattice: (1) SC; (2) BCC
i_EoS: Equation of State: (1) Tait equation; (2) Ideal Gas; (3) Poisson equation
h_SWL: Still water level (m).
B: Parameter in Equation of State (Monaghan and Koss, 1999).
gamma: Parameter in Equation of State (Monaghan and Koss, 1999) (Default value 7).
Coef: Coeffficient to calculate the smoothing length (h) in terms of dx,dy,dz

h=coefficient*sqrt(dx*dx+dy*dy+dz*dz)
eps: Epsilon parameter in XSPH approach (Default value 0.5).
rho0: Reference density (Default value 1000 kgm-3).
viscos_val: Viscosity parameter, it corresponds to α (Monaghan and Koss, 1999) if

i_viscos = 1 and to ν (kinematical viscosity) if i_viscos = 2 or 3.
visc_wall: Wall viscosity value for Repulsive Force BC
vlx medium extent in X direction.
vly medium extent in Y direction. It is set to zero when IDIM= 2.
vlz medium extent in Z direction.
dx: Initial interparticle spacing in x direction.
dy: Initial interparticle spacing in y direction.
dz: Initial interparticle spacing in z direction.
h: Smoothing length.
np: Total number of particles.
nb: Number of boundary particles.
nbf: Number of fixed boundary particles. Note that boundary particles can be fixed or

move according to some external dependence (e.g. gates, wavemakers).
ivar_dt: Variable time step calculated when ivar_dt=1.
dt: Initial time step. It is kept throughout the run when ivar_dt=0.
tmax: RUN duration (in seconds)
out: Recording time step (in seconds). The position, velocity, density, pressure and mass

of every particle is recorded in PART file every out seconds.
trec_ini: Initial recording time.
dtrec_det: Detailed recording step.
t_sta_det: Start time in detailed recording.
t_end_det: End Time in detailed recording.
i_restartRun: (0) Start a new RUN; (1) Restart an old RUN.

26

IPART
Created by SPHysicsgen.
Read by SPHysics code at GETDATA (see subsection 3.2.2.3).
UNIT=13
The file contains the following variables recorded at time=0:
In 2D version

xp(1) zp(1) up(1) wp(1) rhop(1) p(1) pm(1) vorty(1)
xp(2) zp(2) up(2) wp(2) rhop(2) p(2) pm(2) vorty(2)

……….
……….

xp(np) zp(np) up(np) wp(np) rhop(np) p(np) pm(np) vorty(np)

In 3D version
xp(1) yp(1) zp(1) up(1) vp(1) wp(1) rhop(1) p(1) pm(1) vortx(1) vorty(1) vortz(1)
xp(2) yp(2) zp(2) up(2) vp(2) wp(2) rhop(2) p(2) pm(2) vortx(2) vorty(2) vortz(2)

……………… ………………..
……………… ………………..

xp(np) yp(np) zp(np) up(np) vp(np) wp(np) rhop(np) p(np) pm(np) vortx(np) vorty(np) vortz(np)

Description:
xp(i) Position in x direction of particle i.
yp(i) Position in y direction of particle i.
zp(i) Position in z direction of particle i.
up(i) Velocity in x direction of particle i.
vp(i) Velocity in y direction of particle i.
wp(i) Velocity in z direction of particle i.
rhop(i) Density of particle i.
p(i) Pressure at particle i.
pm(i) Mass of particle i.
vortx(i),vorty(i),vortz(i) correspond to vorticity in x,y and z constant planes

MATLABIN
Created by SPHysicsgen.
To be used by MATLAB codes for graphical representation.
UNIT=8
The file contains the following variables:
np
vlx
vly
vlz
out
nb

27

Description:
vlx medium extent in x direction.
vly medium extent in y direction. It is set to zero when IDIM= 2.
vlz medium extent in z direction.
The rest of the variables were previously described.

NORMALS
Created by SPHysicsgen.
To be used by SPHysics code when IBC=1. It contents the normal and tangent vectors
to each boundary particle.
UNIT=21
The file contains the following variables:
In 2D version
xnb(i),znb(i),
iBP_Pointer_Info(i,1), iBP_Pointer_Info(i,2), iBP_Pointer_Info(i,3),iBP_Pointer_Info(i,4),
BP_xz_Data(i,1), BP_xz_Data(i,2)

In 3D version
xnb(i),ynb(i),znb(i),xtb(i),ytb(i),ztb(i),xsb(i),ysb(i),zsb(i),
iBP_Pointer_Info(i,1), iBP_Pointer_Info(i,2), iBP_Pointer_Info(i,3),
iBP_Pointer_Info(i,4), iBP_Pointer_Info(i,5), iBP_Pointer_Info(i,6),
BP_xyz_Data(i,1), BP_xyz_Data(i,2), BP_xyz_Data(i,3)

Description:
xnb(i),ynb(i),znb(i): Components of the unitary vector normal to the boundary at point i.
xtb(i),ytb(i),ztb(i): Components of the unitary vector tangential to the boundary at that

point.
xsb(i), ysb(i), zsb(i) Components of the unitary vector tangential to the boundary at

point i and perpendicular to the previous one.
iBP_Pointer_Info(i,1): Absolute index BP
iBP_Pointer_Info(i,2): Rank of BP (default=0, reserved for MPI)
iBP_Pointer_Info(i,3): Absolute index of i-1 neighbour BP
iBP_Pointer_Info(i,4): Absolute index of i+1 neighbour BP
iBP_Pointer_Info(i,5): Absolute index of j-1 neighbour BP
iBP_Pointer_Info(i,6): Absolute index of j+1 neighbour BP
BP_xyz_Data(i,1), BP_xyz_Data(i,2), BP_xyz_Data(i,3): xp(BP), yp(BP), zp(BP)
needed for the future release of a MPI version of the code.

OBSTACLE
Created by SPHysicsgen
To be used by MATLAB codes for graphical representation
UNIT=55

28

The file contains the following variables:
iopt_obst
XXmin
XXmax
YYmin
YYmax
ZZinf
ZZmax
slope
iopt_obst
XXmin
XXmax
YYmin
YYmax
ZZinf
ZZmax
slope
………
iopt_obst

Description:
iopt_obst Conditional variable (1= obstacle exists; 0= it does not exist). The last one is

always zero.
XXmin Minimum value of the obstacle in x direction.
XXmax Minimum value of the obstacle in x direction.
YYmin Minimum value of the obstacle in y direction.
YYmax Minimum value of the obstacle in y direction.
ZZmin Minimum value of the obstacle in z direction.
ZZmax Minimum value of the obstacle in z direction.
Slope Obstacle slope in x direction.

WAVEMAKER
Created by SPHysicsgen
To be used by SPHysics code. Parameters fix the wavemaker extent and movement. It
will only move in x direction.
UNIT=66
The file contains the following variables:
iopt_wavemaker
i_paddleType
nwavemaker_ini
nwavemaker_end
X_PaddleCentre
X_PaddleStart
paddle_SWL
flap_length

29

stroke
twavemaker
Nfreq
A_wavemaker(n)
Period(n)
phase(n)
twinitial(n)

Description:
iopt_wavemaker: Conditional variable (1= Wavemaker exists; 0= it does nor exist).
i_paddleType: Enter Paddle-Type (1: Piston, 2: Piston-flap)
nwavemaker_ini: First wavemaker particle.
nwavemaker_end: Last wavemaker particle.
X_PaddleCentre: Wavemaker Centre position in X coordinates
X_PaddleStart: X_PaddleStart = 0.5*stroke
paddle_SWL: Enter paddle Still Water Level (SWL)
flap_length: Enter piston-flap flap_length
stroke: Wavemaker Stroke = 2*Amplitude
twavemaker: Initial time of wavemaker
Nfreq: Number of frequencies
A_wavemaker:Amplitude of wavemaker movement.
Period: Period of wavemaker movement.
phase(n): Phase of wavemaker movement.
twinitial(n): Start of wavemaker movement (seconds).

GATE
Created by SPHysicsgen
To be used by SPHysics code. Parameters fix the gate extent and movement.
UNIT=77
The file contains the following variables:
iopt_gate
ngate_ini
ngate_end
VXgate,VYgate,VZgate
tgate

Description:
iopt_gate Conditional variable (1= gate exists; 0= it does nor exist).
ngate_ini First gate particle
ngate_end Last gate particle
VXgate,VYgate,VZgate Gate velocity in coordinates
tgate Start of gate movement (seconds).

30

3.2.1.4. Subroutines
All subroutines in SPHysicsgen are inside a single source file SPHysicsgen_2D.f or
SPHysicsgen_3D.f

SPHysicsgen Main program.
Depending on the subroutine, different container geometries can be used.
BOX Subroutine to build a box in 2D or 3D.
BEACH Subroutine to build a beach in 2D or 3D. The beach consists in a flat area

followed by a tilted region. The tilted area always has a slope in x- direction and a
possible slope in y- direction.

Each subroutine calls new subroutines to generate the walls of the container and the
different obstacles placed inside it.
BOUNDARIES_LEFT Subroutine to generate the left boundary of the container both in

2D and 3D.
BOUNDARIES_RIGHT Subroutine to generate the right boundary of the container

both in 2D and 3D.
BOUNDARIES_BOTTOM Subroutine to generate the bottom boundary of the

container both in 2D and 3D.
BOUNDARIES_FRONT Subroutine to generate the front of the container in 3D.
BOUNDARIES_BACK Subroutine to generate the back of the container in 3D.
WALL Subroutine to generate a wall with an arbitrary slope in x- direction inside the

container.
WALL_HOLE Subroutine to generate a wall with a round shaped hole inside the

container (Only in 3D version).
WALL_SLOT Subroutine to generate a wall with a slot inside the container (Only in

3D version).
OBSTACLE Subroutine to generate an obstacle inside the container.
WAVEMAKER Subroutine to generate a piston that can move in x- direction.
GATE Subroutine to generate gate that can move in any direction.
EXTERNAL_GEOMETRY This subroutine, which only works in 2D, reads the

container and the initial fluid distribution from a file previously generated. The
MATLAB software to generate the pre-processing will be provided in next
release.

Apart from previous subroutines, which control the shape and dimensions of the
container, other subroutines are responsible of the fluid properties inside that container.
FLUID_PARTICLES Subroutine to choose between different initial distributions of the

fluid.
DROP Subroutine used to generate a round shaped area (2D or 3D) as initial position.

The velocity of the particles inside the region can be fixed by the user (all
particles share the same velocity).

SET Subroutine used to generate a set of particle as initial condition. The number of
particle and the initial position and velocity of each particle can be decided by the

31

user. This configuration is particularly useful when checking changes in the code
since it permit runs with a small number of moving particles.

FILL PART Subroutine used to generate a cubic area as initial position (2D or 3D).
Different cubes can placed at different position inside the computational domain.

WAVE Subroutine used to generate a wave (2D or 3D) advancing in x- direction as
initial position.

POS_VELOC Subroutine used to determine the initial position and velocity of particles.
PRESSURE Subroutine used to determine the initial pressure of particles.
P_BOUNDARIES Subroutine to assign density equal to the reference density to the

boundary particles and gage pressure equal to zero.
CORRECT_P_BOUNDARIES Subroutine to correct pressure at boundaries. It

considers the density to be equal to the reference density plus a hydrostatic
correction. Pressure is then calculated according to Batchelor equation (see Eq.
1.17).

PERIODICITYCHECK Subroutine to determine the limits in periodic boundary
conditions. These BC are only available in 3D and in y- direction.

NORMALS_CALC_2D and NORMALS_CALC_3D Subroutines to calculate the
normals to be used in repulsive boundary conditions.

NORMALS_FILEWRITE_2D and NORMALS_FILEWRITE_3D Subroutines to write
the normals to be used in repulsive boundary conditions.

TOCOMPILE_IFORT Subroutine to create the MAKEFILE, SPHysics.mak, used to
compile SPHysics using a IFORT compiler. The source files to be included in
SPHysics.mak depend on the particular conditions of the run fixed by the input
files.

TOCOMPILE_GFORTRAN Subroutine to create the MAKEFILE, SPHysics.mak,
used to compile SPHysics using a GFORTRAN compiler. The source files to be
included in the MAKEFILE depend on the particular conditions of the run fixed
by the input files.

TOCOMPILE_CVF Subroutine to create the MAKEFILE necessary to compile
SPHysics using a Compaq Visual Fortran compiler. The source files to be
included in the MAKEFILE depend on the particular conditions of the run fixed
by the input files.

3.2.2. SPHYSICS
SPHysics nature depends on the compiling option determined by SPHysicsgen

3.2.2.1. Input files
The input files correspond to the output files generated by SPHysicsgen and described
in section 3.2.1.3.

32

3.2.2.2. Output files

PART_klmn
Created by SPHysics at POUTE_3D.f or POUTE_2D.f with a periodicity in seconds
fixed by the input_file used to run SPHysicsgen.
UNIT=23
The structure of PART_klmn is the same as that of IPART previously described. The
indices k, m, n and l can take any integer value from 0 to 9, in such a way that the
maximum number of images is 9999.
Each PART_klmn file is opened, recorded and closed in each call to POUTE_3D.f or
POUTE_2D.f subroutines, so, a single UNIT=23 is assigned to all PART_klmn files.

SCAL
Created by SPHysics at POUTE_3D.f or POUTE_2D.f with the same periodicity as
PART_klmn.
UNIT=22
The following variables are recorded:
itime time np nb nbf h

Description:
itime: Number of iterations since the beginning of the run.
time: Time instant (in seconds).
np: Total number of particles.
nb: Number of boundary particles.
nbf: Number of fixed boundary particles. Note that boundary particles can be fixed or

move according to some external dependence (e.g. gates, wavemakers).
h: Smoothing length.

DT
Created by SPHysics at POUTE_3D.f or POUTE_2D.f
UNIT=19
The following variables are recorded:
time dt1 dt2 dtnew

Description:
time: Time instant (in seconds)
dt1: Time step based on the force per unit mass (see section 2.2).
dt2: Time step combining the Courant and the viscous conditions (see section 2.2).
dtnew: Time step corresponding to next step using dt1 and dt2.

DETPART_klmn
Created by SPHysics at POUTE_3D.f or POUTE_2D.f

33

UNIT=53
The same as PART_klmn but with a shorter periodicity during a certain interval of the
run. Details about periodicity, starting and end of this recording can be seen in section
4.

EPART
Created by SPHysics at POUTE_3D.f or POUTE_2D.f at the end of the run.
UNIT=33
This file contains the same information as IPART but corresponding to the end of the
run.

ESCAL
Created by SPHysics at POUTE_3D.f or POUTE_2D.f at the end of the run
UNIT=32
It contains the same information as SCAL.

ENERGY
Created by SPHysics at ENERGY_2D.f or ENERGY_3D.f.
UNIT=50
The file contains the following variables recorded with the same periodicity as
PART_kmnl.

time Eki_p Epo_p TE_p Eki_b Epo_b TE_b

Description:
time Time instant (in seconds)
Eki_p Kinetical energy summation (for fluid particles)
Epo_p Potential energy summation (for fluid particles)
TE_p Thermal energy summation (for fluid particles)
Eki_b Kinetical energy summation (for boundary particles)
Epo_b Potential energy summation (for boundary particles)
TE_b Thermal energy summation (for boundary particles)

NOTE: Boundary particle energies only make sense when using Dynamic Boundary
Conditions.

RESTART
Created by SPHysics at SPHYSICS_3D.f or SPHYSICS_2D.f
UNIT=44
The following variables are recorded:
itime time ngrab

34

Description:
itime: Number of iterations since the beginning of the run.
time: Time instant (in seconds).
ngrab: Recording instant.

3.2.2.3. Subroutines
All subroutines in SPHysicsgen are placed in the same source file, however SPHysics
ones are placed in different source files. A short description of each possible subroutine
follows.

SPHysics (Source file: SPHYSIC_2D.f or SPHYSIC_3D.f). Main program containing

the main loop.
GETDATA (Source file: GETDATA_2D.f or GETDATA_3D.f). Subroutine called

from SPHysics at the beginning of the run. It provides data about the run (scales,
kernel parameters, steps, use of gates and/or wavemakers…).

ENERGY (Source file: ENERGY_2D.f or ENERGY_2D.f). Subroutine called from
SPH to record information about energy (kinematical, potential and thermal). This
subroutine is called at the beginning and end of the run and also every out seconds
(variable provided by INDAT file). It creates the file ENERGY described in
previous section.

INI_DIVIDE (Source file: INI_DIVIDE.f). Subroutine called from SPH at the
beginning of the run (just for fixed boundary particles) and from subroutine STEP
during the run (every time step for moving objects and fluid particles). It
initializes the link list.

DIVIDE (Source file: DIVIDE_2D.f and DIVIDE_3D.f). Subroutine called from
SPHysics at the beginning of the run and from subroutine STEP during the run
(every time step). The first time (when called from SPHysics) creates the link list
corresponding to the fixed boundary particles. The rest of the calls the subroutine
allocates the fluid particles and the moving boundary particles into the link list.

KEEP_LIST (Source file: KEEP_LIST.f). Subroutine called from SPHysics at the
beginning of the run just after calling DIVIDE. It keeps the list of fixed boundary
particles, which is never recalculated again.

CHECK_LIMITS (Source files: CHECK_LIMITS_2D.f and CHECK_LIMITS_3D.f).
Subroutine called from SPHysics every time step. The subroutines detect the
position of particles outside the computational domain and relocate them (see
section 2.5).

POUTE (Source files: POUTE_2D.f and POUTE_3D.f). Subroutine called from
SPHysics to record information about particles (position, velocity, density,
pressure and mass). This subroutine is called at the beginning and end of the run
and also every out seconds. It creates the SCAL, PART, ESCAL and EPART files
previously described.

35

STEP (Source files: STEP_PREDICTOR_CORRECTOR_2D.f,
STEP_PREDICTOR_CORRECTOR_3D.f, STEP_VERLET_2D.f and
STEP_VERLET_3D.f). Subroutine called from SPHysics. It basically manages
the marching procedure, depending on the computational algorithm (Predictor-
Corrector or Verlet).

CORRECT (Source files: CORRECT_2D.f, CORRECT_3D.f, CORRECT_SPS_2D.f
and CORRECT_SPS_3D.f). This subroutine is called by STEP every time step. It
basically accounts for the body forces and XSPH correction (and SPS terms are
calculated if i_visos = 3).

RECOVER_LIST (Source file: RECOVER_LIST.f). This subroutine is called from
STEP every time step. It recovers the list corresponding to the fixed boundary
particles created by KEEP_LIST.

VARIABLE_TIME_STEP (Source files: VARIABLE_TIME_STEP_2D.f and
VARIABLE_TIME_STEP_3D.f). This subroutine is called from STEP every time
step. It calculates the time step considering maximum inter-particle forces, the
speed of sound and the viscosity.

AC (Source files: AC_2D.f and AC_3D.f). This subroutine is called from STEP every
time step. It controls the boundary particles movement (gates and wavemakers)
and calls the subroutines SELF and CELIJ.

SELF (Source files: SELF_BC_DALRYMPLE_2D.f, SELF_BC_DALRYMPLE_3D.f,
SELF_BC_MONAGHAN_2D.f, SELF_BC_MONAGHAN_3D.f). This
subroutine is called from AC every time step. It controls the interaction between
particles inside the same “cell” determined by the link list.

CELIJ (Source files: CELIJ_BC_DALRYMPLE_2D.f,
CELIJ_BC_DALRYMPLE_3D.f, CELIJ_BC_MONAGHAN_2D.f,
CELIJ_BC_MONAGHAN_3D.f). This subroutine is called from AC every time
step. It controls the interaction between particles inside adjacent “cells”
determined by the link list.

KERNEL (Source files: KERNEL_GAUSSIAN_2D.f, KERNEL_GAUSSIAN_2D.f,
KERNEL_QUADRATIC_2D.f, KERNEL_QUADRATIC_3D.f,
KERNEL_CUBIC_2D.f, KERNEL_CUBIC_3D.f,
KERNEL_WENDLAND5_2D.f, KERNEL_ WENDLAND5_3D.f). This
subroutine is called from SELF and CELIJ every time step. It calculates the
particle-particle interaction according to kernel definition (1=gaussian,
2=quadratic; 3=cubic; 5=wendland) and dimensionality of the problem (2D or
3D).

VISCOSITY (Source files: VISCOSITY_ARTIFICIAL_2D.f,
VISCOSITY_ARTIFICIAL_3D.f, VISCOSITY_LAMINAR_2D.f,
VISCOSITY_LAMINAR_3D.f, VISCOSITY_LAMINAR+SPS_2D.f and
VISCOSITY_LAMINAR+SPS_3D.for). This subroutine is called from SELF and
CELIJ every time step. It calculates viscosity terms depending on the chosen

36

option ((1) Artificial (2) Laminar (3) Laminar +SPS) and dimensionality of the
problem (2D or 3D).

MONAGHANBC (Source file: MONAGHANBC_2D.f and MONAGHANBC_3D.f).
This subroutine is called from CELIJ and SELF (only when considering
SELF_BC_MONAGHAN_3D.f and CELIJ_BC_MONAGHAN_3D.f sources). It
accounts for Monaghan’s repulsive force between fluid and boundary particles.

MOVINGOBJECTS (Source file: MOVINGOBJECTS_2D.f and MOVINGOBJECTS
_3D.f). This subroutine is called from STEP.

MOVINGPADDLE (Source file: MOVINGPADDLE_2D.f and MOVINGPADDLE
_3D.f). This subroutine is called from MOVINGOBJECTS.

MOVINGWEDGE (Source file: MOVINGWEDGE_2D.f and MOVINGWEDGE
_3D.f). This subroutine is called from MOVINGOBJECTS.

DENSITYFILTER_SHEPARD (Source file: DENSITYFILTER_SHEPARD_2D.f and
DENSITYFILTER_SHEPARD_3D.f). Subroutine called from SPHysics every 30
time steps. It uses a Shepard filter when selected in initial conditions.

DENSITYFILTER_MLS (Source file: DENSITYFILTER_MLS _2D.f and
DENSITYFILTER_MLS _3D.f). Subroutine called from SPHysics every 30 time
steps. It uses a MLS filter when selected in initial conditions.

AC_MLS (Source files: AC_MLS_2D.f and AC_MLS_3D.f). This subroutine is called
from DENSITYFILTER_MLS. It calls the subroutines PRE_SELF and
PRE_CELIJ.

PRE_SELF (Source files: SELF_BC_DALRYMPLE_2D.f,
SELF_BC_DALRYMPLE_3D.f, SELF_BC_MONAGHAN_2D.f,
SELF_BC_MONAGHAN_3D.f). This subroutine is called from AC_MLS.

PRE_CELIJ (Source files: CELIJ_BC_DALRYMPLE_2D.f,
CELIJ_BC_DALRYMPLE_3D.f, CELIJ_BC_MONAGHAN_2D.f,
CELIJ_BC_MONAGHAN_3D.f). This subroutine is called from AC_MLS.

LU_DECOMPOSITION (Source files: LU_DECOMPOSITION_2D.f,
LU_DECOMPOSITION_3D.f,). This subroutine is called from
DENSITYFILTER_MLS. It constructs the LU-decomposition matrix

EOS_IDEALGAS (Source files: EOS_IDEALGAS_2D.f, EOS_IDEALGAS_3D.f,). It
uses the equation of Ideal Gases to solve the pressure.

EOS_POISSON (Source files: EOS_ POISSON_2D.f, EOS_IDEALGAS_3D.f,). It uses
the equation of Poisson to solve the pressure.

EOS_TAIT (Source files: EOS_IDEALGAS_2D.f, EOS_IDEALGAS_3D.f,). It uses
the equation of Tait to solve the pressure.

37

4. TEST CASES

4.1. Running the model
Creating and running executable files can be done step by step by the user (compiling
the different source files, putting them in a certain directory and executing the codes
while typing the values of the different variables and options when prompted).
Nevertheless, this process can become tedious, especially when running different
realizations of the same case with small differences in a small number of parameters.
The entire process can be automatically done, although with some differences on
different computer systems. Here we will show two examples for WINDOWS and
LINUX.

4.1.1. Compiling and executing on Linux

SPHysics also currently supports following fortran compilers that have been tested on
Linux platforms,

1. gfortran, a free Fortran 95/2003 compiler that can be downloaded from
http://gcc.gnu.org/wiki/GFortran.

2. The non-commercial Intel ® Fortran Compiler 10.0 that can be downloaded from
http://www.intel.com/cd/software/products/asmo-na/eng/compilers/282048.htm.
In this document, this compiler will be referred to as ifort.

In order to run SPHysics on Linux, gfortran, ifort and the GNU make utility need to be
installed and available in the default search path (typically /usr/bin or /usr/local/bin).
The f0llowing paragraphs explain the procedure to compile and run the 2D version of
SPHysics. The procedure is exactly the same for the 3D version.

Compiling SPHysicsgen_2D

In the SPHysics_2D/source/SPHysicsgen2D directory there are two Makefiles named
SPHysicsgen_gfortran.mak and SPHysicsgen_ifort.mak. As their names suggest, they
are used to compile SPHysicsgen_2D using the gfortran and ifort compilers
respectively. The gfortran Makefile can be executed using the command 'make -f
Makefile_gfortran.mak'. The Makefile,

1. compiles SPHysicsgen_2D
2. checks for existence of SPHysics_2D/execs and SPHysics_2D/execs.bak

directories. If non-existent these directories are created.
3. moves the previous version of the SPHysicsgen_2D executable, if available, from

the execs directory to execs.bak directory
4. moves the latest compiled version of SPHysicsgen_2D to the execs directory.

38

Running SPHysicsgen_2D and SPHysics_2D

As mentioned before, SPHysicsgen_2D, based on the options chose by the user,
generates the Makefile, SPHysics.mak, to compile the main program SPHysics. The
subroutines tocompile_gfortran and tocompile_ifort, in SPHysicsgen_2D, write out
SPHysics.mak for gfortran and ifort compilers respectively.

There are linux batch files located in the four 2D example directories,
run_directory/CaseN, where N=1,2,3,4. These batch files are named CaseN_linux.bat
(N=1,2,3,4) . Similar linux batch files are located in the 3D example directories.

The following table gives a detailed description of the commands used in the script file
Case1_linux.bat which is located in SPHysics_2D/run_directory/Case1. This batch file
can be executed, while in the Case1 directory, by typing ./Case1_linux.bat at the
command prompt.

COMMAND COMMENTS
../../execs/SPHysicsgen_2D < Case1.txt >
Case1.out

Run SPHysicsgen_2D with Case1.txt as
the input file instead of command line
input. The output from the execution is
redirected in Case1.out

cp SPHysics.mak ../../source/SPHysics2D Copy the generated Makefile to the
SPHysics2D source directory.

cd ../../source/SPHysics2D Change to source directory in order to
compile SPHysics using SPHysics.mak

make -f SPHysics.mak clean Remove any prexisting object files
make -f SPHysics.mak Compile and generate SPHysics_2D

using SPHysics.make. Similar to the
Makefiles for SPHysicsgen_2D, this
Makefile compiles and places the
SPHysics_2D executable in the execs
directory and moves the older
executable to the execs.bak directory

rm SPHysics.mak Remove the Makefile from the
source/SPHysics2D directory.

cd ../../run_directory/Case1 Change to the Case1 example directory.
../../execs/SPHysics_2D > sph.out Execute SPHysics_2D and redirect the

output from the run to sph.out

39

4.1.2. Compiling and executing on Windows.

In the SPHysics_2D/source/SPHysicsgen2D directory there is a Makefile named
SPHysicsgen_cvf.mak. It is used to compile SPHysicsgen_2D using the CVF compiler.
The cvf Makefile can be executed using the command NMAKE /f
"SPHysicsgen_cvf.mak"

As mentioned before, SPHysicsgen_2D, based on the options chose by the user,
generates the Makefile, SPHysics.mak, to compile the main program SPHysics. The
subroutine tocompile_windows, in SPHysicsgen_2D, write out SPHysics.mak for cvf
compiler

There are windows batch files located in the example directories, The batch file
Case1_cvf.bat located in .\SPHysics\SPHysics_2D\run_directory\Case1 (see Fig. 3.1) is
used. Similar batch files correspond to other 2D examples. Examples corresponding to
3D calculations can be found in .\SPHysics\SPHysics_3D\run_directory\Case1
The user should, while in the Case1 directory, write Case1_cvf.bat on a command
window. The content of this file is briefly describe in next table

COMMAND COMMENTS
del *.exe Remove previous executable

files.
copy..\..\execs\SPHysicsgen_2D.exe
SPHysicsgen_2D.exe

Copy SPHysicsgen_2D.exe file
to the working directory.

SPHysicsgen_2D.exe <Case1.txt > Case1.out Run SPHysicsgen_2D.exe.
This program creates the initial
conditions and select the options
of the run. In addition, it also
creates a file SPHysics.mak that
can be used to compile the
SPHysics_2D code with the right
options.
Any name can be used for the
input and output files

copy SPHysics.mak
..\..\source\SPHysics_2D\SPHysics.mak

Copy the SPHysics.mak file to
the place where the SPHysics_2D
source files are located.

cd ..\..\execs\ Change to the directory where the
executable file will be created.

del *.obj Remove previous object files
del SPHysics_2D.exe Remove previous executable

versions of SPHysics_2D.exe

40

cd..\source\SPHysics_2D Change to the directory
containing the SPHysics_2D
source files

NMAKE /f "SPHysics.mak" NMAKE /f "SPHysics.mak" is
used to compile
SPHysics_2D.exe. There are
multiple options to compile
SPHysics_2D.exe. They are
automatically selected depending
on the initial conditions provided
by the input file (Case1.txt in this
example). The file SPHysics.mak,
which is automatically created by
SPHysicsgen_2D.exe, contains
information about those options.

cd ..\..\ run_directory\Case1 Change directory
copy ..\..\execs\SPHysics_2D.exe SPHysics_2D.exe

Copy SPHysics_2D.exe file to
the working directory

SPHysics_2D.exe >sph.out Run the case.
Any name can be used for the
output file sph.out

41

4.2. Test case 1: 2D Dam break in a box
The case can be run using Case1.bat (Case1_cvf.bat or Case1_linux.bat) whose output
directory is Case1. The input file Case1.txt is located in the output directory. The
information contained in that file can be summarized as follows:

Figure 4.1: Initial configuration of Case1.

Variable Name Value Comments
i_restartRun 0 Start a new RUN

i_kernel 5 Kind of kernel
5=Wendland kernel

i_algorithm 1 Kind of algorithm
1=predictor corrector

i_densityfilter 1 To apply a Shepard filter
i_viscos 1 Viscosity:

(1) Artificial
(2) Laminar
(3) Laminar +SPS

Viscos_val 0.5 If i_viscos = 1 it corresponds to α
(Monaghan and Koss, 1999)
If i_viscos = 2 or 3 it corresponds to ν
(kinematical viscosity on the order of
10-6).

i_EoS 1 Weakly Compressible Fluid
(Tait’s equation)

h_SWL 2.0 Still water level (m).
Used to calculate B and the speed of
sound1.

coef 10 Coefficient to calculate B.
Recommended values(10 , 40)1

42

IBC 2 Boundary Conditions
1= Monaghan & Kos (1999)
2= Dalrymple & Knio (2000)

i_geometry 1 Geometry of the medium
1= BOX whose bottom can be tilted in
X and Y
2= Beach

lattice 2 Lattice: (1) SC; (2) BCC
vlx,vlz 4.0,4.0 Dimension of the medium
dx,dz 0.03,0.03 Initial interparticle spacing
beta_deg 0 inclination of floor (X direction)
iopt_addwall 0 Add wall (1=y)
iopt_obst 0 Add obstacle (1=y)
iopt_wavemaker 0 Add wavemaker (1=y)
iopt_gate 0 Add gate (1=y)

initial 2 Initial configuration of the fluid
1= Set of particles without grid
2= Particles. on a grid filling the box
till a certain height
3= Particles on a grid filling a part of
the box till a certain height
4=Round shaped drop

i_correct_pb 0 Initial pressure is corrected at fluid
particles (hydrostatic). If i_correct_pb
=1 its also done for boundary
particles.

XXmin,XXmax 0.03,1.0 Extent of fluid in X
ZZmin,ZZmax 0.03,2.0 Extent of fluid in Z
iopt_fill_part 0 If iopt_fill_part =1 a new region will

be filled
The previous parameters (since
i_correct_pb) will be asked.

tmax,out 3,0.02 tmax: Run duration (seconds)
out: Recording time step (seconds)

trec_ini 0.0 trec_ini: initial time of outputting
general data (seconds)

dtrec_det,t_sta_det,t_end_det 0,1,-1 Detailed recording
step, Start time, End Time
A wrong sequence where
t_sta_det > t_end_det disables this

43

option
dt,ivar_dt 0.0001, 1 dt: Initial time step (seconds)

ivar_dt: Controls variable time step (If
ivar_dt = 1 ⇒ variable time step)2

coefficient 0.92 Coeffficient to calculate the smoothing
length (h) in terms of dx,dz,
h=coefficient*sqrt(dx*dx+dz*dz)

i_compile_opt 3 Compiler : 1=gfortran, 2=ifort, 3=
Compaq Visual Fortran

1Following (Monaghan and Koss, 1999), the speed of sound is imposed depending on
the fastest waves in the medium which themselves depend on h_SWL
2 The variable time step is calculated following Monaghan (1989) and Monaghan &
Koss (1999).

 44

Figure 4.2: X-Velocity plot in Case1.

45

4.3. Test case 2: 2D Dam break evolution over a wet bottom in a box.
The case can be run using Case2.bat whose output directory is Case2. The input file
Case2.txt is located in the output directory. The information contained in that file can be
summarized as follows:

Figure 4.3: Initial configuration of Case2

Variable Name Value Comments
i_restartRun 0 Start a new RUN

i_kernel 3 Kind of kernel
3= Cubic Spline kernel

i_algorithm 2 Kind of algorithm
2=verlet

i_densityfilter 0 No density filter is applied
i_viscos 1 Viscosity:

(1) Artificial
(2) Laminar
(3) Laminar +SPS

Viscos_val 0.08 If i_viscos = 1 it corresponds to α
(Monaghan and Koss, 1999)
If i_viscos = 2 or 3 it corresponds to ν
(kinematical viscosity on the order of
10-6).

i_EoS 1 Weakly Compressible Fluid
(Tait’s equation)

h_SWL 0.15 Still water level (m).
Used to calculate B and the speed of
sound1.

coef 13 Coefficient to calculate B.
Recommended values(10 , 40)1

IBC 2 Boundary Conditions
1= Monaghan & Kos (1999)
2= Dalrymple & Knio (2000)

46

i_geometry 1 Geometry of the medium
1= BOX whose bottom can be tilted in
X and Y
2= Beach

lattice 2 Lattice: (1) SC; (2) BCC

vlx,vlz 2,0.16 Dimension of the medium
dx,dz 0.005,0.005 Initial interparticle spacing
beta_deg 0 inclination of floor (X direction)
iopt_addwall 0 Add wall (1=y)

iopt_obst 0 Add obstacle (1=y)
iopt_wavemaker 0 Add wavemaker (1=y)
iopt_gate 1 Add gate (1=y)
Xwall 0.39 Gate position in X

ZZmin,ZZmax 0.,0.16 Gate height ??
VXgate,VZgate 0.,1.5 GATE Velocity ??
tgate 0 Initial time to start gate movement
iopt_gate 0 Add new gate (1=y)
initial 2 Initial configuration of the fluid

1= Set of particles without grid
2= Particles. on a grid filling the box
till a certain height
3= Particles on a grid filling a part of
the box till a certain height
4=Round shaped drop

i_correct_pb 0 Initial pressure is corrected at fluid
particles (hydrostatic). If i_correct_pb
=1 its also done for boundary
particles.

XXmin,XXmax 0.01,0.38 Extent of fluid in X
ZZmin,ZZmax 0.005,0.15 Extent of fluid in Z
iopt_fill_part 1 If iopt_fill_part =1 a new region will

be filled
The previous parameters (since
i_correct_pb) will be asked.

XXmin,XXmax 0.4,1.995 Extent of fluid in X

ZZmin,ZZmax 0.005,0.018 Extent of fluid in Z

47

iopt_fill_part 0

tmax,out 1.2,0.01 tmax: Run duration (seconds)
out: Recording time step (seconds)

trec_ini 0.0 trec_ini: initial time of outputting
general data (seconds)

dtrec_det,t_sta_det,t_end_det 0,1,-1 Detailed recording
step, Start time, End Time
A wrong sequence where
t_sta_det > t_end_det disables this
option

dt,ivar_dt 0.001, 1 dt: Initial time step (seconds)
ivar_dt: Controls variable time step (If
ivar_dt = 1 ⇒ variable time step)2

coefficient 0.92 Coeffficient to calculate the smoothing
length (h) in terms of dx,dz,
h=coefficient*sqrt(dx*dx+dz*dz)

i_compile_opt 3 Compiler : 1=gfortran, 2=ifort,
3=COMPAQ VISUAL FORTRAN

 48

Figure 4.4: Density plot in Case2

Kg/m3

49

4.4. Test case 3: Waves generated by a paddle in a beach
The case can be run using Case3.bat whose output directory is Case3. The input file
Case3.txt is located in the output directory. The information contained in that file can be
summarized as follows:

4.4.1 Case 2D

Figure 4.5: Initial configuration of Case3 in 2D.

Variable Name Value Comments
i_restartRun 0 Start a new RUN

i_kernel 2 Kind of kernel
2= Quadratic

i_algorithm 1 Kind of algorithm
1=Predictor-Corrector

i_densityfilter 1 To apply a Shepard filter
i_viscos 3 Viscosity:

(1) Artificial
(2) Laminar
(3) Laminar +SPS

Viscos_val 1.0e-6 If i_viscos = 1 it corresponds to α
(Monaghan and Koss, 1999)
If i_viscos = 2 or 3 it corresponds to ν
(kinematical viscosity on the order of
10-6).

i_EoS 1 Weakly Compressible Fluid
(Tait’s equation)

h_SWL 0.2 Still water level (m).
Used to calculate B and the speed of
sound1.

coef 16 Coefficient to calculate B.
Recommended values(10 , 40)1

IBC 1 Boundary Conditions
1= Monaghan & Kos (1999)
2= Dalrymple & Knio (2000)

visc_wall 8.0e-3 Wall viscosity value for Repulsive
Force BC

50

i_geometry 2 Geometry of the medium
1= BOX whose bottom can be tilted in
X and Y
2= Beach

lattice 1 Lattice: (1) SC; (2) BCC

vlx,vly,vlz 3.75,0.30 Dimension of the medium
dx,dy,dz 0.01,0.01 Initial interparticle spacing
vlx1 1.0 Length of Flat Domain

beta_deg 4.2364 Slope (deg) of the inclined plane (beta
) ??

iopt_wavemaker 1 If wavemaker will be added, left wall
is not needed (1=yes)

iopt_obstacle 0 Add obstacle (1=yes)
i_paddleType 2 Enter Paddle-Type (1: Piston, 2:

Piston-flap)
X_PaddleCentre 0.13 Wavemaker Centre position in X

coordinates
paddle_SWL 0.15 Enter paddle Still Water Level (SWL)
flap_length 0.1344 Enter piston-flap flap_length
ZZMin, ZZmax 0.0,0.3 Start and end of the wavemaker in Z

twavemaker 0.0 Initial time of wavemaker
Nfreq 1 Number of frequencies
A_wavemaker 0.2442 Wavemaker Stroke = 2*Amplitude
Period 1.4 Period
Phase 0 Phase
twinitial 0 twinitial
iopt_wavemaker 0 Add another wavemaker inside the

beach (1=yes)
iopt_gate 0 Add gate (1=y)
iopt_RaichlenWedge 0 Add Sliding Raichlen Wedge (1=yes)

i_water 1 Add water in the flat region ?? (1=yes)
XXmin,XXmax 0, 1.0 Extent of fluid in X
ZZmin,ZZmax 0.025, 0.18 Extent of fluid in Z
i_water2 1 Add water in the inclined region ??

(1=yes)
XXmin,XXmax 1.0, 3.75 Extent of fluid in X
ZZmin,ZZmax 0.025, 0.18 Extent of fluid in Z
i_wave 0 Add a solitary wave ?? (1=yes)

51

tmax,out 5.0,0.05 tmax: Run duration (seconds)
out: Recording time step (seconds)

trec_ini 0.0 trec_ini: initial time of outputting
general data (seconds)

dtrec_det,t_sta_det,t_end_det 0,1,-1 Detailed recording
step, Start time, End Time
A wrong sequence where
t_sta_det > t_end_det disables this
option

dt,ivar_dt 0.000045,0 dt: Initial time step (seconds)
ivar_dt: Controls variable time step (If
ivar_dt = 1 ⇒ variable time step)2

coefficient 0.92 Coeffficient to calculate the smoothing
length (h) in terms of dx,dy,dz
h=coefficient*sqrt(dx*dx+dy*dy+dz*
dz)

i_compile_opt 3 Compiler : 1=gfortran, 2=ifort,
3=COMPAQ VISUAL FORTRAN

 52

Figure 4.6: Wave formation in Case3 (for 2D).

53

4.4.2 Case 3D

Figure 4.7: Initial configuration of Case3 in 3D.

Variable Name Value Comments
i_restartRun 0 Start a new RUN

i_kernel 2 Kind of kernel
2= Quadratic

i_algorithm 1 Kind of algorithm
1=Predictor-Corrector

i_densityfilter 1 To apply a Shepard filter
i_viscos 3 Viscosity:

(1) Artificial
(2) Laminar
(3) Laminar +SPS

Viscos_val 1.0e-6 If i_viscos = 1 it corresponds to α
(Monaghan and Koss, 1999)
If i_viscos = 2 or 3 it corresponds to ν
(kinematical viscosity on the order of
10-6).

i_EoS 1 Weakly Compressible Fluid
(Tait’s equation)

h_SWL 0.15 Still water level (m).
Used to calculate B and the speed of
sound1.

coef 16 Coefficient to calculate B.
Recommended values(10 , 40)1

IBC 1 Boundary Conditions
1= Monaghan & Kos (1999)
2= Dalrymple & Knio (2000)

visc_wall 8.0e-1 Wall viscosity value for Repulsive
Force BC

54

i_geometry 2 Geometry of the medium
1= BOX whose bottom can be tilted in
X and Y
2= Beach

lattice 2 Lattice: (1) SC; (2) BCC

vlx,vly,vlz 2.75,0.20,0.25 Dimension of the medium
dx,dy,dz 0.02,0.02,0.02 Initial interparticle spacing
vlx1 0.5 Length of Flat Domain

beta_deg 4.2364 Slope (deg) of the inclined plane (beta
) ??

i_periodicOBs(1),i_periodicO
Bs(2),i_periodicOBs(3)

0,1,0 Periodic Lateral boundaries in X, Y, &
Z-Directions ? (1=yes)

iopt_wavemaker 1 If wavemaker will be added, left wall
is not needed (1=yes)

iopt_obstacle 0 Add obstacle (1=yes)
iopt_wavemaker 1 Add wavemaker (1=yes)
i_paddleType 2 Enter Paddle-Type (1: Piston, 2:

Piston-flap)
X_PaddleCentre 0.13 Wavemaker Centre position in X

coordinates
paddle_SWL 0.15 Enter paddle Still Water Level (SWL)
flap_length 0.1344 Enter piston-flap flap_length
YYMin, YYmax 0.0,0.2 Start and end of the wavemaker in Y
ZZMin, ZZmax 0.0,0.25 Start and end of the wavemaker in Z

twavemaker 0.0 Initial time of wavemaker
Nfreq 1 Number of frequencies
A_wavemaker 0.2442 Wavemaker Stroke = 2*Amplitude
Period 1.4 Period
Phase 0 Phase
twinitial 0 twinitial
iopt_wavemaker 0 Add another wavemaker inside the

beach (1=yes)
iopt_gate 0 Add gate (1=y)
iopt_RaichlenWedge 0 Add Sliding Raichlen Wedge (1=yes)
i_water 1 Add water in the flat region ?? (1=yes)
XXmin,XXmax 0, 0.515 Extent of fluid in X
YYmin,YYmax 0.025, 0.1975 Extent of fluid in Y
ZZmin,ZZmax 0.025, 0.15 Extent of fluid in Z

55

i_water2 1 Add water in the inclined region ??
(1=yes)

XXmin,XXmax 0.52, 2.5 Extent of fluid in X
YYmin,YYmax 0.025, 0.1975 Extent of fluid in Y
ZZmin,ZZmax 0.025, 0.15 Extent of fluid in Z
i_wave 0 Add a solitary wave ?? (1=yes)

tmax,out 5.0,0.05 tmax: Run duration (seconds)
out: Recording time step (seconds)

trec_ini 0.0 trec_ini: initial time of outputting
general data (seconds)

dtrec_det,t_sta_det,t_end_det 0,1,-1 Detailed recording
step, Start time, End Time
A wrong sequence where
t_sta_det > t_end_det disables this
option

dt,ivar_dt 0.00005, 1 dt: Initial time step (seconds)
ivar_dt: Controls variable time step (If
ivar_dt = 1 ⇒ variable time step)2

coefficient 0.866025 Coeffficient to calculate the smoothing
length (h) in terms of dx,dy,dz
h=coefficient*sqrt(dx*dx+dy*dy+dz*
dz)

i_compile_opt 3 Compiler : 1=gfortran, 2=ifort,
3=COMPAQ VISUAL FORTRAN

56

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

4.5. Test case 4: Tsunami generated by a sliding Wedge
The case can be run using Case4.bat whose output directory is Case4. The input file
Case4.txt is located in the output directory. The information contained in that file can be
summarized as follows:

4.5.1 Case 2D

Figure 4.8: Initial configuration of Case4 in 2D.

Variable Name Value Comments
i_restartRun 0 Start a new RUN
i_kernel 2 Kind of kernel

2= Quadratic
i_algorithm 1 Kind of algorithm

1=Predictor-Corrector
i_densityfilter 2 To apply a MLS filter
i_viscos 3 Viscosity:

(1) Artificial
(2) Laminar
(3) Laminar +SPS

Viscos_val 1.0e-6 If i_viscos = 1 it corresponds to α
(Monaghan and Koss, 1999)
If i_viscos = 2 or 3 it corresponds to ν
(kinematical viscosity on the order of
10-6).

i_EoS 1 Weakly Compressible Fluid
(Tait’s equation)

h_SWL 3.0 Still water level (m).
Used to calculate B and the speed of
sound1.

57

coef 16 Coefficient to calculate B.
Recommended values(10 , 40)1

IBC 1 Boundary Conditions
1= Monaghan & Kos (1999)
2= Dalrymple & Knio (2000)

visc_wall 2.0e-4 Wall viscosity value for Repulsive
Force BC

i_geometry 2 Geometry of the medium
1= BOX whose bottom can be tilted in
X and Y
2= Beach

lattice 1 Lattice: (1) SC; (2) BCC

vlx,vlz 9.5,4.0 Dimension of the medium
dx,dz 0.1,0.1 Initial interparticle spacing
vlx1 2.25 Length of Flat Domain

beta_deg 26.565051 Slope (deg) of the inclined plane
(beta) ??

iopt_wavemaker 0 If wavemaker will be added, left wall
is not needed (1=yes)

iopt_obstacle 0 Add obstacle (1=yes)
iopt_wavemaker 0 Add wavemaker (1=yes)
iopt_RaichlenWedge 1 Add Raichlen wedge (1=yes)
bigDelta 0.3 Enter block-top elevation above SWL

specificWeight 2.14 Enter specific Weight
block_length, block_height,
block_width

0.91, 0.455, 0.61 Enter block_length, block_height,
block_width

dxW, dzW 0.04, 0.04 Enter block discretization size
i_water 1 Add water in the flat region ?? (1=yes)
XXmin,XXmax 0.05, 2.20 Extent of fluid in X
ZZmin,ZZmax 0.05, 3.5 Extent of fluid in Z
i_water2 1 Add water in the inclined region ??

(1=yes)
XXmin,XXmax 2.30, 9.5 Extent of fluid in X
ZZmin,ZZmax 0.05, 3.5 Extent of fluid in Z
i_wave 0 Add a solitary wave ?? (1=yes)

tmax,out 3.0,0.015 tmax: Run duration (seconds)
out: Recording time step (seconds)

trec_ini 0.0 trec_ini: initial time of outputting

58

general data (seconds)
dtrec_det,t_sta_det,t_end_det 0,1,-1 Detailed recording

step, Start time, End Time
A wrong sequence where
t_sta_det > t_end_det disables this
option

dt,ivar_dt 0.00011, 0 dt: Initial time step (seconds)
ivar_dt: Controls variable time step (If
ivar_dt = 1 ⇒ variable time step)2

coefficient 0.92 Coeffficient to calculate the smoothing
length (h) in terms of dx,dz
h=coefficient*sqrt(dx*dx+dz*dz)

i_compile_opt 3 Compiler : 1=gfortran, 2=ifort,
3=COMPAQ VISUAL FORTRAN

 59

Figure 4.9: Tsunami generation using sliding Wedge (for 2D).

 60

4.5.2. Case 3D

Figure 4.10: Initial configuration of Case4 in 3D.

Variable Name Value Comments
i_restartRun 0 Start a new RUN
i_kernel 2 Kind of kernel

2= Quadratic
i_algorithm 1 Kind of algorithm

1=Predictor-Corrector
i_densityfilter 2 To apply a MLS filter
i_viscos 3 Viscosity:

(1) Artificial
(2) Laminar
(3) Laminar +SPS

Viscos_val 1.0e-6 If i_viscos = 1 it corresponds to α
(Monaghan and Koss, 1999)
If i_viscos = 2 or 3 it corresponds to ν
(kinematical viscosity on the order of
10-6).

i_EoS 1 Weakly Compressible Fluid
(Tait’s equation)

h_SWL 2.5 Still water level (m).
Used to calculate B and the speed of
sound1.

coef 16 Coefficient to calculate B.
Recommended values(10 , 40)1

61

IBC 1 Boundary Conditions
1= Monaghan & Kos (1999)
2= Dalrymple & Knio (2000)

visc_wall 8.0e-3 Wall viscosity value for Repulsive
Force BC

i_geometry 2 Geometry of the medium
1= BOX whose bottom can be tilted in
X and Y
2= Beach

lattice 2 Lattice: (1) SC; (2) BCC

vlx,vly,vlz 8.5,2.7,3.0 Dimension of the medium
dx,dy,dz 0.15,0.15,0.15 Initial interparticle spacing
vlx1 2.25 Length of Flat Domain

beta_deg 26.565051 Slope (deg) of the inclined plane (beta
) ??

i_periodicOBs(1),i_periodicO
Bs(2),i_periodicOBs(3)

0,1,0 Periodic Lateral boundaries in X, Y, &
Z-Directions ? (1=yes)

iopt_wavemaker 0 If wavemaker will be added, left wall
is not needed (1=yes)

iopt_obstacle 0 Add obstacle (1=yes)
iopt_wavemaker 0 Add wavemaker (1=yes)
iopt_RaichlenWedge 1 Add Raichlen wedge (1=yes)
bigDelta 0.3 Enter block-top elevation above SWL

specificWeight 2.14 Enter specific Weight
block_length, block_height,
block_width

0.91, 0.455, 0.61 Enter block_length, block_height,
block_width

dxW, dyW, dzW 0.04, 0.04, 0.04 Enter block discretization size
i_water 1 Add water in the flat region ?? (1=yes)
XXmin,XXmax 0.075, 2.21 Extent of fluid in X
YYmin,YYmax 0.0751, 2.651 Extent of fluid in Y

ZZmin,ZZmax 0.075, 2.5 Extent of fluid in Z
i_water2 1 Add water in the inclined region ??

(1=yes)
XXmin,XXmax 2.325, 8.5 Extent of fluid in X
YYmin,YYmax 0.0751, 2.651 Extent of fluid in Y
ZZmin,ZZmax 0.075, 2.5 Extent of fluid in Z
i_wave 0 Add a solitary wave ?? (1=yes)

62

tmax,out 3.0,0.015 tmax: Run duration (seconds)
out: Recording time step (seconds)

trec_ini 0.0 trec_ini: initial time of outputting
general data (seconds)

dtrec_det,t_sta_det,t_end_det 0,1,-1 Detailed recording
step, Start time, End Time
A wrong sequence where
t_sta_det > t_end_det disables this
option

dt,ivar_dt 0.0001729, 0 dt: Initial time step (seconds)
ivar_dt: Controls variable time step (If
ivar_dt = 1 ⇒ variable time step)2

coefficient 0.866025 Coeffficient to calculate the smoothing
length (h) in terms of dx,dy,dz
h=coefficient*sqrt(dx*dx+dy*dy+dz*
dz)

i_compile_opt 3 Compiler : 1=gfortran, 2=ifort,
3=COMPAQ VISUAL FORTRAN

63

4.6. Test case 5: 3D dam-break interaction with a structure

The case can be run using Case5.bat whose output directory is Case5. The input file
Case5.txt is located in the output directory. The information contained in that file can be
summarized as follows:

Figure 4.11: Initial configuration of Case5.

Variable Name Value Comments
i_restartRun 0 Start a new RUN
i_kernel 3 Kind of kernel

3= Cubic Spline
i_algorithm 1 Kind of algorithm

1=predictor corrector
i_densityfilter 0 No filter is applied
i_viscos 1 Viscosity:

(1) Artificial
(2) Laminar
(3) Laminar +SPS

Viscos_val 0.1 If i_viscos = 1 it corresponds to α
(Monaghan and Koss, 1999)
If i_viscos = 2 or 3 it corresponds to ν
(kinematical viscosity on the order of
10-6).

i_EoS 1 Weakly Compressible Fluid
(Tait’s equation)

h_SWL 0.30 Still water level (m).
Used to calculate B and the speed of
sound1.

64

coef 10 Coefficient to calculate B.
Recommended values(10 , 40)1

IBC 2 Boundary Conditions
1= Monaghan & Kos (1999)
2= Dalrymple & Knio (2000)

i_geometry 1 Geometry of the medium
1= BOX whose bottom can be tilted
in X and Y
2= Beach

lattice 2 Lattice: (1) SC; (2) BCC

vlx,vly,vlz 1.6,0.67,0.4 Dimension of the medium
dx,dy,dz 0.0225,0.0225,

0.0225
Initial interparticle spacing

beta_deg 0 inclination of floor (X direction)
Theta_deg 0 inclination of floor (Y direction)

iopt_addwall 0 Add wall (1=y)

iopt_addwallslot 0 Add wall with slot (1=y)
iopt_addwallhole 0 Add wall with hole (1=y)
iopt_obst 1 Add obstacle (1=y)
iopt_kind 2 Kind of obstacle (1) Solid, (2) Solid

Walls
ndes 2 Density of points(ndens):

dxi_new=dxi_old/ndens (ndens >1
increases density)

XMin, Xmax 0.9,1.02 Cube containing particles in X
YMin, Ymax 0.24,0.36 Cube containing particles in Y

ZMin, Zmax 0.,0.45 Cube containing particles in Z
slope 90 slope in X direction
iopt_obst 0 Add new obstacle (1=y)
iopt_wavemaker 0 Add wavemaker (1=y)
iopt_gate 0 Add gate (1=y)

initial 2 Initial configuration of the fluid
1= Set of particles without grid
2= Particles. on a grid filling the box
till a certain height
3= Particles on a grid filling a part of
the box till a certain height
4=Round shaped drop

65

i_correct_pb 0 Initial pressure is corrected at fluid
particles (hydrostatic). If i_correct_pb
=1 it’s also done for boundary
particles.

XXmin,XXmax 0.0225,0.4 Extent of fluid in X
YYMin, YYmax 0.0225,0. 6475 Extent of fluid in Y
ZZmin,ZZmax 0.0225,0.36 Extent of fluid in Z
iopt_fill_part 1 If iopt_fill_part =1 a new region will

be filled
The previous parameters (since
i_correct_pb) will be asked.

XXmin,XXmax 0.4225,0.8775 Extent of fluid in X
YYMin, YYmax 0.0225,0.6475 Extent of fluid in Y
ZZmin,ZZmax 0.0225,0.03 Extent of fluid in Z
iopt_fill_part 1 If iopt_fill_part =1 a new region will

be filled
The previous parameters (since
i_correct_pb) will be asked.

XXmin,XXmax 0.9,1.025 Extent of fluid in X
YYMin, YYmax 0.0225,0.2175 Extent of fluid in Y
ZZmin,ZZmax 0.0225,0.03 Extent of fluid in Z
iopt_fill_part 1 If iopt_fill_part =1 a new region will

be filled
The previous parameters (since
i_correct_pb) will be asked.

XXmin,XXmax 0.9,1.025 Extent of fluid in X
YYMin, YYmax 0.3825,0.6475 Extent of fluid in Y
ZZmin,ZZmax 0.0225,0.03 Extent of fluid in Z
iopt_fill_part 1 If iopt_fill_part =1 a new region will

be filled
The previous parameters (since
i_correct_pb) will be asked.

XXmin,XXmax 1.0425,1.5775 Extent of fluid in X
YYMin, YYmax 0.0225,0.6475 Extent of fluid in Y
ZZmin,ZZmax 0.0225,0.03 Extent of fluid in Z
iopt_fill_part 0

tmax,out 2,0.01 tmax: Run duration (seconds)
out: Recording time step (seconds)

trec_ini 0.0 trec_ini: initial time of outputting
general data (seconds)

66

dtrec_det,t_sta_det,t_end_det 0,1,-1 Detailed recording
step, Start time, End Time
A wrong sequence where
t_sta_det > t_end_det disables this
option

dt,ivar_dt 0.0001, 1 dt: Initial time step (seconds)
ivar_dt: Controls variable time step
(If ivar_dt = 1 ⇒ variable time step)2

coefficient 0.866025 Coeffficient to calculate the
smoothing length (h) in terms of
dx,dy,dz
h=coefficient*sqrt(dx*dx+dy*dy+dz*
dz)

i_compile_opt 3 Compiler : 1=gfortran, 2=ifort,
3=COMPAQ VISUAL FORTRAN

 67

Figure 4.12: Interaction wave-structure in Case5

68

5. VISUALIZATION

To visualize the results obtained from SPHysics simulations, some basic post-
processing programs have been provided in the SPHysics_2D/Post-Processing and
SPHysics-3D/Post-Processing directories.

Detailed README files, explaining the procedure to view the results using Matlab and
Paraview, are available in those directories . The user is encouraged to read these
README files prior to using the visualization programs.

6. REFERENCES

Batchelor, G. K. 1974. Introduction to fluid dynamics. Cambridge University Press.

U.K.
Benz W. 1990. Smoothed Particle Hydrodynamics: A review in The numerical

Modelling of Nonlinear Stellar Pulsations: Problems and Prospects, J.R. Butchler
ed., Kluwer Acad. Publ. 269-288

Bonet J. and T.-S. L. Lok. Variational and momentum preservation aspects of Smoothed
Particle Hydrodynamic formulations, Comput. Methods Appl. Mech. Engrg, 180, 97-
115, 1999.

Colagrossi A. and M. Landrini. Numerical simulation of interfacial flows by smoothed
particle hydrodynamics, J. Comp. Phys., 191, 448-475, 2003.

Crespo, A.J.C., Gómez- Gesteira, M and Dalrymple, R.A. 2007. Boundary conditions
generated by dynamic particles in SPH methods. Computers, materials & continua,
5(3): 173-184.

Dilts, G. A. Moving-Least–Squares-Particle Hydrodynamics – I. Consistency and
stability, Int. J. Numer. Meth. Engng, 44, 1115-1155, 1999.

Gómez-Gesteira, M. and Dalrymple, R. 2004. Using a 3D SPH method for wave impact
on a tall structure. J. Wtrwy. Port, Coastal and Ocean Engrg. 130(2): 63-69.

Gómez-Gesteira, M., Cerqueiro, D., Crespo, C., and Dalrymple, R. 2005. Green water
overtopping analyzed with a SPH model, Ocean Engineering. 32: 223-238.

Gotoh, H., Shao S., and Memita, T. 2004. SPH-LES model for numerical investigation
of wave interaction with partially immersed breakwater. Coastal Engineering
Journal, 46(1): 39-63.

Dalrymple, R.A. and Knio, O. 2000. SPH modelling of water waves,” Proc. Coastal
Dynamics, Lund.

Dalrymple, R.A. and Rogers, B.D. 2006. Numerical modeling of water waves with the
SPH method. Coastal Engineering 53: 141 – 147

Liu, G.R. 2003. Mesh Free methods: Moving beyond the finite element method. CRC
Press, pp. 692.

69

Monaghan, J. J. 1982 Why particle methods work. Siam J. Sci. Stat. Comput. 3:
422-433.

Monaghan, J. J. 1989. On the problem of penetration in particle methods. Journal
Computational Physics, 82: 1-15.

Monaghan, J. J. 1992. Smoothed particle hydrodynamics. Annual Rev. Astron. Appl.,
30: 543- 574.

Monaghan, J. J. 1994. Simulating free surface flows with SPH. Journal Computational
Physics, 110: 399- 406.

Monaghan, J. J. 2000. SPH without tensile instability. Journal Computational Physics,
159: 290-311.

Monaghan, J. J. 2005. Smoothed Particle Hydrodynamics. Rep. Prog. Phys. 68: 1703-
1759.

Monaghan, J. J. and Kos, A. 1999. Solitary waves on a Cretan beach. J. Wtrwy. Port,
Coastal and Ocean Engrg., 125: 145-154.

Monaghan, J.J., and Lattanzio, J.C., 1985. A refined method for astrophysical problems.
Astron. Astrophys. 149: 135–143.

Morris, J.P., Fox, P.J. and Shu, Y. 1997. Modeling lower Reynolds number
incompressible flows using SPH. Journal Computational Physics, 136: 214-226.

Peskin, C. S. 1977. Numerical analysis of blood flow in the heart. Journal
Computational Physics 25: 220- 252.

Verlet, L. 1967. Computer experiments on classical fluids. I. Thermodynamical
properties of Lennard-Jones molecules. Phys. Rev. 159: 98-103.

Wendland, H. 1995. Piecewiese polynomial, positive definite and compactly supported
radial functions of minimal degree. Advances in computational Mathematics 4(1):
389- 396.

7. PUBLICATIONS USING THE SPHysics CODE

Journal Papers

Dalrymple, R.A. and B.D. Rogers, "Numerical Modeling of Water Waves with the SPH

Method," Coastal Engineering, 53/2-3, 141-147, 2007
Crespo, A.J., M. Gómez-Gesteira, and R.A. Dalrymple, "Boundary Conditions

Generated by Dynamic Particles in SPH Methods”, CMC: Computers, Materials, &
Continua, 5, 3, 173-184, 2007.

Gómez-Gesteira, M., D. Cerquiero, A.J.C. Crespo and R.A. Dalrymple, "Green Water
Overtopping Analyzed with an SPH Model," Ocean Engineering, 32, 2, 223-238,
2005.

Gómez-Gesteira, M., R.A. Dalrymple, A.J.C. Crespo, and D. Cerquiero, "Uso de la
Tecnica SPH para el Estudio de la Interaccion entre Olas y Estructuras," Ingenieria
del Agua, 11, 2, 2004.

70

Gómez-Gesteira, M. and R.A. Dalrymple, "Using a 3D SPH Method for Wave Impact
on a Tall Structure, J. Waterways, Port, Coastal, Ocean Engineering, 130, 2, 63-69,
2004.

Crespo, A.J., M. Gómez-Gesteira, and R.A. Dalrymple, “3D SPH Simulation of large
waves mitigation with a dike”, Journal of Hydraulic Research, 45, 5, 631-642, 2007

Conference Proceedings

Crespo, A.J., M. Gómez-Gesteira, and R.A. Dalrymple, “Vorticity Generated By A

Dam Break Over A Wet Bed Modeled By Smoothed Particle Hydrodynamics”,
Proceedings of 32nd Congress of IAHR, the International Association of Hydraulic
Engineering & Research, CORILA, 2007.

Dalrymple, R., B.D. Rogers, M. Narayanaswamy, S. Zou, M. Gesteira, A.J.C. Crespo
and A. Panizzo, “Smoothed Particle Hydrodynamics for Water Waves”, Proceedings
of the 26th International Conference on Offshore Mechanics and Artic Engineering,
ASME, 2007.

Rogers, B.D. and R.A. Dalrymple, ``Three-Dimensional SPH-SPS Modeling of Wave
Breaking, Symposium on Ocean Wave Measurements and Analysis, ASCE, Madrid,
2005.

Dalrymple, R.A., ``New Technology: SPH for Coastal Processes, Keynote Address,
Symposium on Ocean Wave Measurements and Analysis, ASCE, Madrid, 2005.

Narayanaswamy, M. and R.A. Dalrymple, ``A Hybrid Boussinesq and SPH Model for
Forced Oscillations, Symposium on Ocean Wave Measurements and Analysis, ASCE,
Madrid, 2005.

Rogers, B.D. and R.A. Dalrymple, ``SPH Modeling of Breaking Waves, Proc. 29th Intl.
Conference on Coastal Engineering, Lisbon, World Scientific Press, 415-427, 2004.

Book Chapters

Rogers, B.D. and R.A. Dalrymple, ``SPH Modeling of Tsunamis, Proc. Intl. Workshop

on Longwave Run-up, Advances in Coastal Engineering Series, P.L.-F. Liu, ed.,
World Scientific, in press, 2006.

