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ABSTRACT

Tsunamis belong to a class of geophysical problems with vastly different spatial
scales of interest. For instance, the wave propagation of a global scale tsunami
may result in wave run-up and inundation that varies greatly even along local
stretches of coastline. This diversity of scales presents a difficulty to numerical
modelers—the accuracy that is desired at a local scale requires a grid resolu-
tion that is simply not feasible to use at the global scale. Additionally, waves
that propagate throughout the global domain may be concentrated in localized
areas at a given time. Therefore, using fixed telescoping grids is not always a
satisfactory solution.
We have used adaptive mesh refinement algorithms, originally developed for
gas dynamics, to numerically model global scale tsunamis. These algorithms
allow regions with grids of varying refinement where the solution has steep
gradients or other features of interest. The regions of refinement may move
adaptively with the solution over time, allowing various resolutions in a single
global scale computation.

The Shallow Water Equations with Topography
� Equations for Depth and Momentum
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� These Equations are a Hyperbolic Conservation Law

∂tq + ∂x f (q,~x,t)+ ∂yg(q,~x,t) = ψ

The Wave Propagation Method

∂tq + ∂x f (q,~x,t)+ ∂yg(q,~x,t) = ψ
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The Numerical Integrator on Each Grid:

� Based on a wave-propagation method developed for hyperbolic conser-
vation laws.

� Finite volume discretization approximates a discrete integral conserva-
tion law.

� Grid-cell values, Qn
i j, represent average conserved quantities in each cell.

� Update in each timestep comes from solving 1D normal Riemann prob-
lems.

Properties of the Method:

� Numerically conservative.

� Second-order accurate for smooth solutions.

� Shock-capturing allows convergence to propagating bores.

� Dry-regions are captured in the computing domain.

Adaptive Mesh Refinement

� A single coarse Cartesian grid serves as the parent grid.

� Different scales are accommodated by multiple Cartesian sub-grids of
different resolutions.

� Refinement regions evolve in time by adaptively generating new grids
and averaging old grids, based on refinement algorithms.

� Propagating waves can be highly resolved by refined grids that move
with the waves.

� Regions of interest can be highly resolved as waves arrive.

� Computation is not wasted in nearly static regions, since such regions
can be accurately modelled by very coarse grids.

� One large computing domain reduces difficulties associated with com-
putational boundaries.

Grid Refinement on the Indian Ocean

Example: The Indian Ocean with five levels of refinement

Grid lines on the finest grids in each figure are omitted for clarity

Refined grids track the propagating waves toward Sri Lanka

Higher refinement occurs as waves approach the Sri Lankan coast Fifth level of Refinement on multiple grids around the coast

Shoreline Capturing

� Dry land is also part of the computing domain, eliminating the need for
special treatment of the shorelines.

� In a dry region the finite volume cells simply have zero depth.

� Inundation at shorelines is naturally captured by allowing grid cells to
fill up with water or drain out.

� We have developed Riemann solvers for this application that allow cells
to dry without generating negative depths.

� It has been our goal to design Riemann solvers that accurately capture
wave run-up onto dry land, without excessive computational cost.

� The conservative form of the shallow water equations, and the wave
propagation algorithm, allow convergence to bores or waves at the
breaking point.

Inundation at a Local Scale

Snapshots of a problem from the Long-Wave Workshop 2004 [6]
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