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Theory employed



The models
| o

#® Eulerian FDM for standard Boussinesq equations
Nonlinear code without particular run-up feature

Used only in linear mode, with and without dispersion
terms

#® Lagrangian FDM for Boussinesq type equations
Method particularly designed for runup
Fully nonlinear, but weakly dispersive. Employed in
hydrostatic and dispersive mode
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Definitions

=

h equilibrium depth, h’ = dh(x,t)/dx etc.
n surface elevation

H = h + n total depth

u depth-averaged horizontal velocity

© o o o

Averaged material derivate

D 0 0,

S u
Dt ot ox
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The fully nonlinear Boussinesq equations

o .

DH  _0u
Dt ox’
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ox Dt
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H(Dt) Dt+(8:c +2 )u+1+

Red: “Important” dispersion terms

Green: fully nonlinear version, S1 + S5: source terms.
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Long waves and Lagrangian coordinates

o .

Simple flow structure = material fluid columns remain
(nearly) vertical

Lagrangian coordinate a: 2¢ =0, a(z,0) =z

. -D 8 8 . HI _
Transformation 5; — ;. 52 — . aq ©iC-» Ho = H(a,0)

ox
H-— = Hy,

da 9 H8H  oh

u

1—()— el +g——()+()+ 514+ 52,
(1= 0=0) 5y = =05 g5 + 95, — 0+0+51+5:
or

ot

Shoreline: H = 0 at fixed a

o -
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The slide representation

B | -

Momentum conservation

(1= 0= 0) g0 = 95 0 +952— 0+ 0+ 51452

dominant explicit forcing term: g 92

Additional h.o. (dispersive) terms from slide

6 4 g g 0%k 1 _9h  9°h)\ du
= — — u {
tree a2ox g\  otdx = o2 ) ot
82h 8H  8%h

“oton 0t T 15002
- o
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The Lagrangian Boussinesq model

o .

Second order FDM model. Staggered grid in space
and time.

H -node at shoreline position (fixed a).
Condition H = h + n = 0 implemented directly.

Hydrostatic (NLSW) version is explicit.

Dispersive version implicit — iteration on nonlinearity
(may be avoided)

Wave paddle is also simple to implement.
No smoothing or filtering for non-breaking waves.

Hydrostatic (NLSW) extensions to non-planar waves
exist
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Results



Nomenclature

=

°

ref.; (Semi-)analytic solutions from reference papers

°

Bouss(NL) : Nonlinear Boussinesq solution
(Lagrangian)

NLSW: Nonlinear shallow water solution (Lagrangian)
Bouss(L): Linear Boussinesq solution (Eulerian)
SW(L): Linear shallow water solution (Eulerian)

pot(NL): Full potential theory (boundary integral
method)

o o o o

Color codes are preferably kept consistent.

o -
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CaseB,t = 4.5
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~ Batt = 4.5. Comparison of models. o
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Case A,t = 0.1
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Case A,t = 1.5
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~ Aatt = 1.5. Comparison of models. .
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CaseB,t = 1.0
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CaseB,t = 2.5
B o
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CaseB,t = 4.5
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A,t = 0.5: convergence
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~ Bouss(NL), A: t = 0.5. Curves marked by Aa (m) .
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B, t = 2.5: convergence
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Concluding remarks 1

o .

Wave models

# Linear h.o. term for slide (S;) affects wave generation
slightly for case B

# Dispersion important for B when generated waves
propagate into deeper water

Even case A is affected by nonlinearity close to beach

°

# Linear models perform fairly well also for case B, but
significant errors (save at wave front for small ¢).

# case A: Reference (analytic solution) superior to
“naive” SW close to shore.
(Not the case for B)

o -
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Concluding remarks 2

o .

Performance of techniques
(Concerning the computed time span)

# Shoreline region most sensitive to resolution

# Case A most demanding due to large difference
between length scales at beach and in deeper water.

# Less demanding than benchmark 1
® Problems in store forcase Aandt > 1.5 ?

o -
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Extras



-

# Series of resolutions employed for each model

9
9
9

The simulations

=

Eulerian FDM: adaptive spatial refinement employed

Lagrangian FDM: uniform resolution initially
Different approximations in source term tested

-
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Case A,t = 0.5
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Case A,t = 1.0
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S |
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Case B,t = 0.5
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A, t

= 1.5: convergence
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B, t = 0.5: convergence
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h.o. source terms

— 51 -= 51+ 52
—10F ---- dh/dx only
| | | | | | |
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~ Bouss(NL), B: t = 4.5. Source terms .
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h.o. source terms
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LBouss(NL), A:t = 1.5. Source terms J
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