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Theory employed
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The models

Eulerian FDM for standard Boussinesq equations
Nonlinear code without particular run-up feature
Used only in linear mode, with and without dispersion
terms

Lagrangian FDM for Boussinesq type equations
Method particularly designed for runup
Fully nonlinear, but weakly dispersive. Employed in
hydrostatic and dispersive mode
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The fully nonlinear Boussinesq equations
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Red: “Important” dispersion terms

Green: fully nonlinear version,

� � � � � : source terms.
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Long waves and Lagrangian coordinates

Simple flow structure material fluid columns remain
(nearly) vertical
Lagrangian coordinate �:
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Shoreline: � �
at fixed �
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The slide representation

Momentum conservation
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Additional h.o. (dispersive) terms from slide
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The Lagrangian Boussinesq model

& Second order FDM model. Staggered grid in space
and time.

& -node at shoreline position (fixed �).
Condition ' � � � � �

implemented directly.

& Hydrostatic (NLSW) version is explicit.

& Dispersive version implicit – iteration on nonlinearity
(may be avoided)

& Wave paddle is also simple to implement.

& No smoothing or filtering for non-breaking waves.

& Hydrostatic (NLSW) extensions to non-planar waves
exist
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Results
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Nomenclature

ref.: (Semi-)analytic solutions from reference papers

Bouss(NL) : Nonlinear Boussinesq solution
(Lagrangian)

NLSW: Nonlinear shallow water solution (Lagrangian)

Bouss(L): Linear Boussinesq solution (Eulerian)

SW(L): Linear shallow water solution (Eulerian)

pot(NL): Full potential theory (boundary integral
method)

Color codes are preferably kept consistent.
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Case B, (
Bouss(NL)

NLSW
� /m

)
*

B at

� � +-, .
. Comparison of models.
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Case A, (

ref. Bouss(NL)
NLSW Bouss(L)
SW(L)

� /m

)
*

A at

� � � , �
. Comparison of models.
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Case A, (

ref. Bouss(NL)
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SW(L)

� /m

)
*

A at

� � � , .
. Comparison of models.

Bench. 3 – p.13/31



Case B, (

ref. Bouss(NL)
NLSW Bouss(L)
SW(L)

� /m

)
*

B at
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Case B, (

ref. Bouss(NL)
NLSW Bouss(L)
SW(L)

� /m
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B at
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Case B, (

ref. Bouss(NL)
NLSW Bouss(L)
SW(L)

� /m

)
*

B at

� � +-, .
. Comparison of models.
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A, ( : convergence

251 62

31 15

� /m

)
*

Bouss(NL), A:
� � � , .

. Curves marked by

/ � (m)
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B, ( : convergence

10.17 5.04
2.51 0.63
0.31

� /m

)
*

Bouss(NL), B:
� � � , .

. Curves marked by

/ � (m)
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Concluding remarks 1

Wave models

Linear h.o. term for slide (

� � ) affects wave generation
slightly for case B

Dispersion important for B when generated waves
propagate into deeper water

Even case A is affected by nonlinearity close to beach

Linear models perform fairly well also for case B, but
significant errors (save at wave front for small

�

).

case A: Reference (analytic solution) superior to
“naive” SW close to shore.
(Not the case for B)
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Concluding remarks 2

Performance of techniques
(Concerning the computed time span)

Shoreline region most sensitive to resolution

Case A most demanding due to large difference
between length scales at beach and in deeper water.

Less demanding than benchmark 1

Problems in store for case A and

� 0 � , .

?
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Extras
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The simulations

Series of resolutions employed for each model

Eulerian FDM: adaptive spatial refinement employed

Lagrangian FDM: uniform resolution initially

Different approximations in source term tested
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Case A, (

ref. Bouss(NL)
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h.o. source terms
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1 �
 1� only

� /m

)
*

Bouss(NL), B:
� � +-, .

. Source terms
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h.o. source terms
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1 �
 1� only

� /m
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Bouss(NL), A:
� � � , .

. Source terms
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