
THE THIRD INTERNATIONAL WORKSHOP ON LONG-WAVE RUNUP MODELS

June 17-18 2004
Wrigley Marine Science Center

Catalina Island, California

Juan J. Horrillo and Zygmunt Kowalik
Institute of Marine Sciences

Edward Kornkven
Arctic Region Supercomputing Center

University of Alaska Fairbanks
Fairbanks, AK 99775,USA

June/2004



REPORT

BENCHMARK PROBLEM -1- (BM1)

Tsunami runup onto a plane beach

1. Problem Description

This is a simple setup for tsunami runup modeling exercise: a uniformly sloping beach
and no variation in the lateral direction, viz. a 2-D problem in the vertical plane. The
initial-value-problem (IVP) technique introduced by Carrier, Wu and Yeh (Journal of Fluid
Mechanics, 475, 79-99, 2003) is used to produce the benchmark data. For the benchmark
problem N.1, the beach slope is 1/10 and the initial free surface elevation is given. As-
signment is to compute and present the snapshots of the free surface and velocity profiles
at t = 160 sec., 175 sec., and 220 sec. The detailed shoreline trajectory is the primary
theme. We describe the algorithm used to calculate the motion of the shoreline (the air-
water-beach interface), Specifically, the temporal variations of the shoreline location and
shoreline velocity from t = 100 sec. to 280 sec., is presented

2. Introduction

To Solve BM1, three approaches have been carried out:

a) First order approximation in time

b) Second order approximation in time (Leap-frog)

c) Volume of Fluid Method VOF

Approaches a) and b) use 1D shallow water wave theory. The finite difference solution
of the equation of motion and the depth integrated continuity equation are solved on a
staggered grid. Both method possess a second order approximation in space. Case a) has
truncation error in time of order one.

A 2D VOF solution has been incorporated to visualize differences between the shallow
water theory (SW) and the full solution of Navier-Stokes (N-S). This method models
transient, incompressible fluid flow with free surface. The finite difference solution of the
incompressible N-S equations are obtained on a Eulerian rectilinear mesh. Friction terms
appear in the equations but have been neglected in all cases.

3. Description of the Models

3.1 First Order Method

Equations of motion and continuity read,

∂u

∂t
+ u

∂u

∂x
+ g

∂ζ

∂x
+

1
ρD

ru|u| = 0 (1)

∂ζ

∂t
+

∂uD

∂x
= 0 (2)



where ρ is the water density, u, is the particle velocity vertically averaged, , H is the mean
water depth, ζ is the sea level, D = (ζ +H) is the total depth, r is the friction coefficient,
and g is the gravity acceleration.

The numerical solution of this system is usually searched by using one-time-level or
the two-time-level numerical scheme (Kowalik and Murty, 1993a). For construction of the
space derivatives in equations (1) and (2), a space staggered grid is used (Arakawa C grid
- see fig. 1).

Figure 1. Time-space grid for the 1D problem.

The numerical scheme is constructed as follow
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T is time step, h is space step. Index m and j = 1, 2, 3, .......n−1, n stand for the time
stepping and horizontal coordinate points respectively.

A very simple runup condition is used. The following steps are taken when the dry
point jwet − 1 is located to the left of the wet point jwet:

IF (ζm(jwet) > −H(jwet − 1)) THEN ζm
jwet−1 = ζm

jwet
and um

jwet
= um

jwet+1

A Similar approach is used for the dry point located to the right of the wet point,
Kowalik and Murty (1993b). This simple extrapolation seems to do a good job in following
the shoreline evolution. Results obtained are depicted in figs. 4-7.

3.2 Leap Frog Method
Equations of motion and continuity are expressed in water transport form.
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where: M = uD is the water transport, n is the Manning’s roughness coefficient.

The numerical solution is constructed on the staggered space-time grid, see fig 2.

Figure 2. Time-space grid for the 1D Leap-Frog Method.

The numerical scheme is second order of approximation in space and time. The
following numerical scheme has been extracted from the work done by Goto, Shuto, Ogawa
and Imamura, (1995). The two-time-level numerical scheme follows:
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where:
µx is a friction term factor, DM is the total depth at M points, and Dr is the total

depth and depends of the sea level and depth of the neighboring cells.
λ1, λ2 and λ3 are the up-down wind’s switches used in the nonlinear term. They are
defined as:
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Usually the Leap-Frog scheme has a second order of approximation. However, as long
as the advection term concerns, the truncation error is of order one.
µx and DM are defined as:
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The Dr defines the value that will be used in the momentum equation to calculate

the new transport Mm+1/2
j .

Dr is calculated using the following set of statements:
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This method does a good job in predicting shore line evolution as well as the previous

one.
Results obtained by the above method are shown in figs. 8-11.

3.3 VOF Method

Equation of continuity for incompressible fluid

∇ · �V = 0 (9)



and the momentum equation,
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are solved in the rectangular system of coordinate. There: �V (x, y, t) is the velocity vector,
ρ is the fluid density, p is the scalar pressure, τ is the viscous stress tensor, �g is the
acceleration due to gravity and t is the time.

Solution of the above equations is searched using the two-step method, Harlow-Welch
(1965), and Chorin (1968). The time discretization of the momentum equation is given by
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In the first step, a velocity filed �̃V is computed from �V m. In the second step, this
velocity field is introduced into equation 13. Equation 13 and 14 can be combined into a
single Poisson equation for the solution of the pressure as,
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The free surfaces of the fluid is described with discrete volume-of-fluid (VOF) method.
The VOF method, pioneered by Hirt and Nichols (1975) is a powerful tool that enable
a finite difference representation of the free surface and interfaces that are arbitrarily
oriented with respect to the computational grid. This method has been extensively used
for prediction of runup, see work done by Mader (1999).

The VOF function is advected as a Lagrangian invariant, propagating according to
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and is the only avaliable free surface information. The scalar field F (�x, t) is defined as:

F (�x, t) =

{ 1, in the fluid;
> 0, < 1, at the free surface
0 in the void

The location of variables in the computational cell follows that of the Marker and Cell
scheme (MAC). The x and y velocities are locate at the vertical and horizontal cell faces,
and the pressure pi,j and VOF-function Fi,j are locate at cell centers, see fig. 3.



F (�x, t) at time t = 0 is assumed to be given.

Figure 3. Location of variables in the VOF method.

This VOF solution has been incorporated to make comparison with SW. The differ-
ences are reasonable since this method solves the 2D N-S equations with the horizontal and
vertical velocities being variable along the water column, while the SW assumes constant
horizontal velocity. We conclude that VOF finite difference solution is a good candidate
to benchmark ”BM1”. Results obtained by this method are shown in figs. 12 and 13.



4. Numerical Results

4.1 First Order

4.1.1 Sea Level
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4.1.2 Velocity
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4.1.3 Temporal and Spatial variation of the Sea Level

Temporal and Spatial Variation of the Water−Surface Elevati on
First Order Scheme

x (dimensionless)

t (
dim

en
sio

nle
ss

)

−0.05 −0.035−0.03 0 0.040.0450.05 0.1 0.15
1.5

2

2.5

3

3.5

x’=Lx                                 
η’=α L η                   
u’=sqrt(gαL)u                    
t’=sqrt(L/(αg))t                 
Where:                                
L=5000 m., α=1/10, g=9.81 m/s2  

Model:                  
dx=1.0e−3 (5 m)         
dt=2.801e−4 (0.02 sec)  

Figure 6.



4.1.4 Temporal and Spatial variation of the Velocity

Temporal and Spatial Variation of the Velocity
 First Order in Time
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4.2 Leap Frog Scheme

4.2.1 Sea Level
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4.2.2 Velocity
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4.2.3 Temporal and Spatial variation of the Sea Level

Temporal and Spatial Variation of the Water−Surface Elevati on
Leap−Frog Scheme
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4.2.4 Temporal and Spatial variation of the Velocity

Temporal and Spatial Variation of the Velocity
Leap−Frog Scheme
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4.3 VOF Method

4.3.1 Sea Level
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4.3.2 Temporal and Spatial variation of the Sea Level

Temporal and Spatial Variation of the Water−Surface Elevati on
 VOF2D
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5. Comparison

5.1 Temporal and Spatial variation of the shore Line
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5.2 Sea Level a)
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5.3 Sea Level b)
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5.4 Velocity Comparison
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6. Conclusion

Comparison of results (see figs. 14-17) indicates a good agreement between the first
order method, second order method and in some extent with the VOF method. Shore line
evolution is well predicted by the first order and second order method. For the first order
method, assumption that the sea level of dry cell equals sea level of wet cell is physically
reasonable. The extrapolation of the velocity of the immediate wet cell to the new wet cell
facilitates runup and improves timing.

The VOF method gives a frame of reference to validate the SW theory. Some differ-
ences in the shore line evolution and timing are quite plausible, since VOF method allows
vertical fluid acceleration while the SW theory does not.
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