Systematics of run-up distributions from dislocation and landslide sources: A near-field discriminant

Emile A. Okal

Department of Geological Sicences Northwestern University Evanston, IL 60201

Costas E. Synolakis

Department of Civil Engineering University of Southern California Los Angeles, CA 90089

THE DISLOCATION SOURCE in the NEAR FIELD

A full description requires at least 8 parameters.

We explore systematically their influence on run-up and seek to define INVARIANTS

NEAR-FIELD: The Earthquake Dislocation

• Compute Ocean-Bottom Deformation due to Dislocation

Simulate Tsunami Propagation to Beach and Run-up

- Simulate Tsunami Propagation to Beach and Run-up
 - Fit Bell Curve

• Vary source parameters: *I* no greater than 2.3×10^{-5} .

MODELS 124, 148, 149

MODELS 124, 150, 151

NEAR-FIELD: The Landslide Source

• Compute Ocean-Surface Deformation due to Landslide

Simulate Tsunami Propagation to Beach and Run-up

- Simulate Tsunami Propagation to Beach and Run-up
- Fit Bell Curve

$$\zeta = \frac{b}{\left(\frac{x-c}{a}\right)^2 + 1}$$

• Retain aspect ratio I = b/a

• Vary source parameters: I greater than 10^{-4} .

I = b/a CAN SERVE AS DISCRIMINANT

VARYING DISTANCE

ASPECT RATIO OF RUN-UP DISTRIBUTION ALONG BEACH

MAX. RUN-UP SCALED TO FAULT SLIP

ASPECT RATIO OF RUN-UP DISTRIBUTION ALONG BEACH

FIGURE 6d-f

FIGURE 6g-i

THE 1946 ALEUTIAN TSUNAMI: A PERSISTING CHALLENGE

- A rather moderate earthquake $(M_{PAS} = 7.4)$
- A devastating transpacific tsunami
- A catastrophic local tsunami

Scotch Cap lighthouse eradicated.

How to model the source of the tsunami: A gigantic earthquake source, or a large underwater landslide, triggered by the seismic event?

DESTRUCTION OF THE LIGHTHOUSE AT SCOTCH CAP, UNIMAK Is.

[Photog. H. Hartman; Courtesy G. Fryer]

After (est. 03-04 (?) Apr. 1946)

No trees grow on the Eastern Aleutian Islands...

Thus, large logs lying several hundred meters inland at altitudes of 10 to 30 m constitute watermarks of inundation by a tsunami, since they are way beyond the limit of even the most powerful storm surges.

In recent decades, only the 1946 tsunami is a viable candidate as the agent of their deposition.

Cape Lutke, UNIMAK ISLAND

1946 RESULTS IN NEAR FIELD

- Run-up at Scotch Cap: 42 m (Ruins of Radio Station)
- Extreme run-up concentrated ^{55° 00'} along 40 km of coast line.
- Run-up "only" 15 m, but inundation up to 2 km along Unimak Bight
- Run-up up to 24 m on Sanak

Near-field Aspect Ratio of Run-up Distribution at Unimak (6.4×10^{-4}) even larger than for PNG-1998, thus

REQUIRING LANDSLIDE SOURCE E

PERU 2001

0

0

10

5

Aspect ratio = $4.19 * 10^{-5}$

Simulated = $4.24 * 10^{-5}$

100

100

100

(b)

(c)

(d)

200

200

200

150

150

150

w/ splash points = 6.99×10^{-5}